{"title":"Topological Transition in One-Dimensional π-Conjugated Polymers via Strain Engineering","authors":"Yifan Li, Kai Zhang, Haifeng Lv, Xiaojun Wu","doi":"10.1021/acsmacrolett.5c00047","DOIUrl":null,"url":null,"abstract":"Topological trivial and nontrivial phases can be readily realized in low-dimensional organic polymers via bottom-up synthesis. However, to effectively harness these topological phases in practical devices, it is crucial to develop strategies for achieving a controllable topological transition. Inspired by topology and π-electron pairing, we propose a method to induce topological transitions through orbital crossover driven by continuous external strain in 10 one-dimensional (1D) π-conjugated polymers (CPs), categorized into aromatic and quinonoid forms. Our results reveal that quinonoid polymers exhibit edge states, indicative of nontrivial topological phases (Zak invariant, <i>Z</i><sub>2</sub> = 1), while aromatic polymers correspond to trivial topological phases (<i>Z</i><sub>2</sub> = 0). Notably, the poly(thiophene dioxide) (TDO) quinonoid polymer undergoes a reversible topological transition under a tensile strain of 3.6%, demonstrating a strain-dependent topological phase. This phenomenon is attributed to the gap closure resulting from the orbital crossover between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). This work uncovers the topological phases in 1D organic polymers and highlights the topological transitions induced by strain engineering.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"22 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Topological trivial and nontrivial phases can be readily realized in low-dimensional organic polymers via bottom-up synthesis. However, to effectively harness these topological phases in practical devices, it is crucial to develop strategies for achieving a controllable topological transition. Inspired by topology and π-electron pairing, we propose a method to induce topological transitions through orbital crossover driven by continuous external strain in 10 one-dimensional (1D) π-conjugated polymers (CPs), categorized into aromatic and quinonoid forms. Our results reveal that quinonoid polymers exhibit edge states, indicative of nontrivial topological phases (Zak invariant, Z2 = 1), while aromatic polymers correspond to trivial topological phases (Z2 = 0). Notably, the poly(thiophene dioxide) (TDO) quinonoid polymer undergoes a reversible topological transition under a tensile strain of 3.6%, demonstrating a strain-dependent topological phase. This phenomenon is attributed to the gap closure resulting from the orbital crossover between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). This work uncovers the topological phases in 1D organic polymers and highlights the topological transitions induced by strain engineering.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.