{"title":"Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation","authors":"Xuan Liao , Man Sing Wong , Rui Zhu","doi":"10.1016/j.rser.2025.115510","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and conversion. While deep learning methods have significantly improved the rapid and accurate estimation of solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal network achieved <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>=0.93, MAE=0.022 (<span><math><mrow><mi>k</mi><mi>W</mi><mi>h</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>), RMSE=0.038 (<span><math><mrow><mi>k</mi><mi>W</mi><mi>h</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>), rRMSE=0.13, and nRMSE=0.048 through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT outperformed traditional machine learning methods with a minimum <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> increase of 23.88%, MAE decrease of 43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore, the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results, and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar potential and offers scientific guidance for the PV industry’s development.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"214 ","pages":"Article 115510"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001832","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and conversion. While deep learning methods have significantly improved the rapid and accurate estimation of solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal network achieved =0.93, MAE=0.022 (), RMSE=0.038 (), rRMSE=0.13, and nRMSE=0.048 through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT outperformed traditional machine learning methods with a minimum increase of 23.88%, MAE decrease of 43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore, the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results, and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar potential and offers scientific guidance for the PV industry’s development.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.