{"title":"Charged analogues of singularity-free anisotropic compact stars under linear f(Q)-action","authors":"Debadri Bhattacharjee, Pradip Kumar Chattopadhyay","doi":"10.1016/j.cjph.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>This study simulates the characteristics of spherically symmetric, anisotropic compact stellar bodies with electrical charge within the framework of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity. Employing the Krori–Barua metric ansatz (K.D. Krori, J. Barua, J. Phys. A: Math. Gen. 8 (1975) 508) along with a linear form of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> model, <em>viz.</em>, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Q</mi></mrow></math></span>, we obtain a tractable set of exact relativistic solutions of the field equations. A specific form of charge <span><math><mrow><mo>(</mo><mi>q</mi><mo>=</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span> is considered here for the present analysis. It is noted that the model is valid up to the value of charge intensity <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>0</mn><mo>.</mo><mn>0009</mn><mspace></mspace><msup><mrow><mi>Km</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Beyond this value, the model does not permit physically viable results. We have obtained the best fit equation of state in the model, which is incorporated to solve the TOV equations numerically to determine the mass–radius relation within the parameter space used here. With increasing charge intensity <span><math><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> from 0.0002 to 0.0009, the maximum mass ranges from 2.84–<span><math><mrow><mn>2</mn><mo>.</mo><mn>92</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span>, and the corresponding radii range from 12.00–12.20 Km. Moreover, the predicted radii of some recently observed pulsars and GW 190814 show that our model also complies with the estimated radii based on the observational results. Our model is found to satisfy all the characteristic features, such as behaviour of matter variables, causality condition, energy constraints and stability criteria, which are pertinent in the context of a stable stellar configuration to emerge as a viable and physically acceptable stellar model in the framework of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"94 ","pages":"Pages 650-669"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000541","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study simulates the characteristics of spherically symmetric, anisotropic compact stellar bodies with electrical charge within the framework of the theory of gravity. Employing the Krori–Barua metric ansatz (K.D. Krori, J. Barua, J. Phys. A: Math. Gen. 8 (1975) 508) along with a linear form of model, viz., , we obtain a tractable set of exact relativistic solutions of the field equations. A specific form of charge is considered here for the present analysis. It is noted that the model is valid up to the value of charge intensity . Beyond this value, the model does not permit physically viable results. We have obtained the best fit equation of state in the model, which is incorporated to solve the TOV equations numerically to determine the mass–radius relation within the parameter space used here. With increasing charge intensity from 0.0002 to 0.0009, the maximum mass ranges from 2.84–, and the corresponding radii range from 12.00–12.20 Km. Moreover, the predicted radii of some recently observed pulsars and GW 190814 show that our model also complies with the estimated radii based on the observational results. Our model is found to satisfy all the characteristic features, such as behaviour of matter variables, causality condition, energy constraints and stability criteria, which are pertinent in the context of a stable stellar configuration to emerge as a viable and physically acceptable stellar model in the framework of gravity.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.