Effect of different data quality control on evapotranspiration of winter wheat with Bowen ratio method

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2025-02-26 DOI:10.1016/j.agwat.2025.109379
Yingnan Wu, Qiaozhen Li, Xiuli Zhong, Daozhi Gong, Xiaoying Liu
{"title":"Effect of different data quality control on evapotranspiration of winter wheat with Bowen ratio method","authors":"Yingnan Wu,&nbsp;Qiaozhen Li,&nbsp;Xiuli Zhong,&nbsp;Daozhi Gong,&nbsp;Xiaoying Liu","doi":"10.1016/j.agwat.2025.109379","DOIUrl":null,"url":null,"abstract":"<div><div>The Bowen ratio energy balance (BREB) method is widely used to study surface evapotranspiration, but its major drawback is the uncertainty when Bowen ratio (β)→ −1. Various approaches have been employed to address this issue, but their performances were less evaluated via long-term field observations. Using data from three growing cycles, this study investigated the effect of five screening methods (Mth1 to Mth5 for −1 − |ε<sub>1</sub>| &lt; β &lt; −1 + |ε<sub>1</sub>|, −1.05 &lt; β &lt; −0.95, β &lt; −0.75, −1.3 &lt; β &lt; −0.75 and β &lt; −0.7 or β &gt; 10 or Δe ≤ 0, Δe denotes the measured vapor pressure gradient, and ε<sub>1</sub> is a coefficient depending on sensor resolution and Δe) on winter wheat evapotranspiration in northern China. On diurnal, daily and seasonal basis, the effect was in the order of Mth5 &gt; Mth3 &gt; Mth1 &gt; Mth2 &gt; Mth4, and the seasonal mean daily value of the gap-filled was 0.38, 0.22, 0.11, 0.01, and 0.01 mm d<sup>−1</sup> higher than the unfilled ones, yielding a seasonal total of 96.0, 53.5, 26.0, −0.9, and 0.4 mm, or 18.9 %, 11.4 %, 6.5 %, −0.2 %, and 0.1 % higher than the unfilled ones, respectively. These values resulted from the large difference in data rejection ranking as Mth5 &gt; Mth3 &gt; Mth1 &gt; Mth4 &gt; Mth2, seasonal mean daily 10-min rejection rate ranging from 15.4–73.2 %, 10.3–48.9 %, 5.3–44.9 %, 1.6–10.4 %, and 0.5–7.3 %, respectively (averaging 42.4 %, 30.5 %, 23.2 %, 5.7 %, and 2.6 %, respectively). The corresponding daily rejected hours ranged from 6.83–8.88, 3.60–6.11, 1.85–3.49, 0.10–0.39, and 0.07–0.33 h/day, respectively (averaging 7.53, 4.77, 2.90, 0.28, and 0.24 h/day, respectively), resulting in large data gaps for Mth5 (58.8 %), Mth3 (38.2 %), and Mth1 (17.5 %). Nighttime deletion dominated for Mth2 to Mth4, accounting for 61.1 %, 64.4 %, 68.3 %, and 63.2 % of the total deletion, whereas daytime deletion dominated for Mth1, accounting for 58.1 %. A large portion of invalid rejections of Mth1 (40.4 %–77.6 %), Mth3 (54.3 %–90.9 %) and Mth5 (61.8 %–92.7 %) was observed at the selected period, which was probably a consequence of the sensor’s error cancellation effect, questioning the traditional a priori assumption that small vapor gradients within instrumental error should be discarded. Overall, large differences were observed and the simple Mth4 performed better than the more restrictive ones. These findings are expected to guide the selection of post-data processing in the application of BREB method.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"311 ","pages":"Article 109379"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425000939","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The Bowen ratio energy balance (BREB) method is widely used to study surface evapotranspiration, but its major drawback is the uncertainty when Bowen ratio (β)→ −1. Various approaches have been employed to address this issue, but their performances were less evaluated via long-term field observations. Using data from three growing cycles, this study investigated the effect of five screening methods (Mth1 to Mth5 for −1 − |ε1| < β < −1 + |ε1|, −1.05 < β < −0.95, β < −0.75, −1.3 < β < −0.75 and β < −0.7 or β > 10 or Δe ≤ 0, Δe denotes the measured vapor pressure gradient, and ε1 is a coefficient depending on sensor resolution and Δe) on winter wheat evapotranspiration in northern China. On diurnal, daily and seasonal basis, the effect was in the order of Mth5 > Mth3 > Mth1 > Mth2 > Mth4, and the seasonal mean daily value of the gap-filled was 0.38, 0.22, 0.11, 0.01, and 0.01 mm d−1 higher than the unfilled ones, yielding a seasonal total of 96.0, 53.5, 26.0, −0.9, and 0.4 mm, or 18.9 %, 11.4 %, 6.5 %, −0.2 %, and 0.1 % higher than the unfilled ones, respectively. These values resulted from the large difference in data rejection ranking as Mth5 > Mth3 > Mth1 > Mth4 > Mth2, seasonal mean daily 10-min rejection rate ranging from 15.4–73.2 %, 10.3–48.9 %, 5.3–44.9 %, 1.6–10.4 %, and 0.5–7.3 %, respectively (averaging 42.4 %, 30.5 %, 23.2 %, 5.7 %, and 2.6 %, respectively). The corresponding daily rejected hours ranged from 6.83–8.88, 3.60–6.11, 1.85–3.49, 0.10–0.39, and 0.07–0.33 h/day, respectively (averaging 7.53, 4.77, 2.90, 0.28, and 0.24 h/day, respectively), resulting in large data gaps for Mth5 (58.8 %), Mth3 (38.2 %), and Mth1 (17.5 %). Nighttime deletion dominated for Mth2 to Mth4, accounting for 61.1 %, 64.4 %, 68.3 %, and 63.2 % of the total deletion, whereas daytime deletion dominated for Mth1, accounting for 58.1 %. A large portion of invalid rejections of Mth1 (40.4 %–77.6 %), Mth3 (54.3 %–90.9 %) and Mth5 (61.8 %–92.7 %) was observed at the selected period, which was probably a consequence of the sensor’s error cancellation effect, questioning the traditional a priori assumption that small vapor gradients within instrumental error should be discarded. Overall, large differences were observed and the simple Mth4 performed better than the more restrictive ones. These findings are expected to guide the selection of post-data processing in the application of BREB method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同数据质量控制对博文比值法冬小麦蒸散量的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
Effect of different data quality control on evapotranspiration of winter wheat with Bowen ratio method Irrigation technology, irrigation dose, and crop genetic impacts on alfalfa yield and quality Evaluating the influence of different straw mulch-autumn irrigation patterns on soil water, heat, and salt in seasonally frozen regions with distributed SHAW model Comparing evapotranspiration estimations using crop model-data fusion and satellite data-based models with lysimetric observations: Implications for irrigation scheduling Cover crop termination method has a limited effect on spring soil moisture and temperature in humid mid-Atlantic U.S.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1