María A. Herrera-Garrido , Sofia G. Mogilevskaya , Vladislav Mantič
{"title":"Simple finite element algorithm for solving antiplane problems with Gurtin–Murdoch material surfaces","authors":"María A. Herrera-Garrido , Sofia G. Mogilevskaya , Vladislav Mantič","doi":"10.1016/j.finel.2025.104318","DOIUrl":null,"url":null,"abstract":"<div><div>The finite element algorithm is developed to solve antiplane problems involving elastic domains whose boundaries or their parts are coated with thin and relatively stiff layers. These layers are modeled by the vanishing thickness Gurtin–Murdoch material surfaces that could be open or closed, and smooth or non-smooth. The governing equations for the problems are derived using variational arguments. The domains are discretized using triangular finite elements. In general, standard linear elements are used to approximate displacements in the domain. However, to capture the singular behavior of the elastic fields near the tips of the open Gurtin–Murdoch surfaces, a novel blended singular element is devised. Numerical examples are presented to demonstrate the accuracy and robustness of the algorithm developed.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"246 ","pages":"Article 104318"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25000071","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The finite element algorithm is developed to solve antiplane problems involving elastic domains whose boundaries or their parts are coated with thin and relatively stiff layers. These layers are modeled by the vanishing thickness Gurtin–Murdoch material surfaces that could be open or closed, and smooth or non-smooth. The governing equations for the problems are derived using variational arguments. The domains are discretized using triangular finite elements. In general, standard linear elements are used to approximate displacements in the domain. However, to capture the singular behavior of the elastic fields near the tips of the open Gurtin–Murdoch surfaces, a novel blended singular element is devised. Numerical examples are presented to demonstrate the accuracy and robustness of the algorithm developed.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.