{"title":"Multi-focus image fusion based on visual depth and fractional-order differentiation operators embedding convolution norm","authors":"Yongli Xian , Guangxin Zhao , Xuejian Chen , Congzheng Wang","doi":"10.1016/j.sigpro.2025.109955","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-focus image fusion technology integrates the focused regions of multiple source images to produce a single, all-in-focus image. However, existing methods have drawbacks, including image artifacts, color distortion, and ambiguous boundaries. In this paper, a spatial-domain two-stage fusion approach is proposed to address these challenges. In the first stage, a fractional-order differentiation operator embedding convolution norm is proposed to amplify pixel texture, while a weighted fusion is applied to obtain an initial fusion result. Here, the absolute difference map between initial fusion result and source images is used as the focus information, ensuring the accuracy of initial decision map. During the second stage, the source images and pseudo-depth information are jointly constructed the feature vector of K-nearest neighbors matting (KNNM) algorithm to refine the decision map, aiming to obtain final decision map with smoother boundaries. Experimental results indicate that the proposed method outperforms existing representative algorithms in both qualitative and quantitative evaluations.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"233 ","pages":"Article 109955"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000696","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-focus image fusion technology integrates the focused regions of multiple source images to produce a single, all-in-focus image. However, existing methods have drawbacks, including image artifacts, color distortion, and ambiguous boundaries. In this paper, a spatial-domain two-stage fusion approach is proposed to address these challenges. In the first stage, a fractional-order differentiation operator embedding convolution norm is proposed to amplify pixel texture, while a weighted fusion is applied to obtain an initial fusion result. Here, the absolute difference map between initial fusion result and source images is used as the focus information, ensuring the accuracy of initial decision map. During the second stage, the source images and pseudo-depth information are jointly constructed the feature vector of K-nearest neighbors matting (KNNM) algorithm to refine the decision map, aiming to obtain final decision map with smoother boundaries. Experimental results indicate that the proposed method outperforms existing representative algorithms in both qualitative and quantitative evaluations.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.