Integrating experimental-based vulnerability mapping with intelligent identification of multi-aquifer groundwater salinization

Mohamed A. Yassin , Sani I. Abba , A.G. Usman , Syed Muzzamil Hussain Shah , Isam H. Aljundi , Shafik S. Shafik , Zaher Mundher Yaseen
{"title":"Integrating experimental-based vulnerability mapping with intelligent identification of multi-aquifer groundwater salinization","authors":"Mohamed A. Yassin ,&nbsp;Sani I. Abba ,&nbsp;A.G. Usman ,&nbsp;Syed Muzzamil Hussain Shah ,&nbsp;Isam H. Aljundi ,&nbsp;Shafik S. Shafik ,&nbsp;Zaher Mundher Yaseen","doi":"10.1016/j.nxsust.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater salinization is a pressing global issue, threatening water security and sustainable development in many regions. In alignment with Saudi Vision 2030 and the Sustainable Development Goals (SDGs), this study addresses groundwater salinity challenges in the coastal regions of eastern Saudi Arabia through comprehensive experimental analysis and advanced mapping techniques. Groundwater samples were analyzed using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) to determine salinity levels. The data were processed using ArcGIS 10.3 software to create vulnerability maps, supported by five artificial intelligence (AI)-based models for robust predictions and enhanced insights. Model performance was assessed using statistical parameters, including Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), Pearson correlation coefficient (PCC), and mean square error (MSE). Among the models, interactive learning (ILR-M3) delivered the best results (RMSE=0.0385; MSE=0.0015), while all models were validated as satisfactory. This research highlights the potential of combining experimental data with AI-driven approaches for effective water resource management. The outcomes directly support Saudi Vision 2030 and contribute to achieving the SDGs by advancing sustainable and intelligent solutions for global water security challenges.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823625000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater salinization is a pressing global issue, threatening water security and sustainable development in many regions. In alignment with Saudi Vision 2030 and the Sustainable Development Goals (SDGs), this study addresses groundwater salinity challenges in the coastal regions of eastern Saudi Arabia through comprehensive experimental analysis and advanced mapping techniques. Groundwater samples were analyzed using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) to determine salinity levels. The data were processed using ArcGIS 10.3 software to create vulnerability maps, supported by five artificial intelligence (AI)-based models for robust predictions and enhanced insights. Model performance was assessed using statistical parameters, including Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), Pearson correlation coefficient (PCC), and mean square error (MSE). Among the models, interactive learning (ILR-M3) delivered the best results (RMSE=0.0385; MSE=0.0015), while all models were validated as satisfactory. This research highlights the potential of combining experimental data with AI-driven approaches for effective water resource management. The outcomes directly support Saudi Vision 2030 and contribute to achieving the SDGs by advancing sustainable and intelligent solutions for global water security challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将基于实验的脆弱性绘图与多含水层地下水盐碱化智能识别相结合
地下水盐渍化是一个紧迫的全球性问题,威胁着许多地区的水安全和可持续发展。根据沙特2030年愿景和可持续发展目标(sdg),本研究通过综合实验分析和先进的制图技术解决了沙特阿拉伯东部沿海地区地下水盐度的挑战。采用离子色谱法(IC)和电感耦合等离子体质谱法(ICP-MS)对地下水样品进行盐度分析。使用ArcGIS 10.3软件处理数据以创建漏洞图,并由五个基于人工智能(AI)的模型提供支持,以进行稳健的预测和增强洞察力。采用统计参数评估模型性能,包括Nash-Sutcliffe效率(NSE)、均方根误差(RMSE)、Pearson相关系数(PCC)和均方误差(MSE)。其中,交互式学习(ILR-M3)效果最好(RMSE=0.0385;MSE=0.0015),所有模型验证均令人满意。这项研究强调了将实验数据与人工智能驱动的方法结合起来进行有效水资源管理的潜力。会议成果直接支持沙特2030愿景,并通过为全球水安全挑战提供可持续和智能的解决方案,为实现可持续发展目标做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pomegranate peel-derived AgNPs for enhanced food safety: Insights into eco-friendly synthesis, antimicrobial, anti-weevil, and jute sack functionalization applications A review of nano-bubble technology in washing: An ecological advancement of post-consumer recycled denim clothing Vegetation health analysis of hilly areas in Darjeeling District of West Bengal using analytical hierarchy process (1998–2022) Spinel ferrite nanoparticles in environmental remediation: Adsorption, catalysis, and sustainability perspectives Estimating manufacturing value-added via hybrid ANFIS-GA and PSO optimization: A macro-analysis of European OECD economies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1