Aswathi Cherakkara , Saima Zafar , Izan Izwan Misnon , Chun-Chen Yang , Rajan Jose
{"title":"Graphite from biomass: A review on synthetic feasibility","authors":"Aswathi Cherakkara , Saima Zafar , Izan Izwan Misnon , Chun-Chen Yang , Rajan Jose","doi":"10.1016/j.jiec.2024.10.059","DOIUrl":null,"url":null,"abstract":"<div><div>Graphite forms the basis of a multibillion-dollar industry; obtained either by mining or by synthesis from petrochemicals with significant energy and materials footprints. Biomass is a carbon-negative and renewable precursor; therefore, obtaining graphite from bioresources is a step forward in the pursuit of sustainability. Herein, we review the advances in their synthesis following conventional (direct pyrolysis, activation, catalytic graphitization, and simultaneous activation-graphitization) and advanced methods (flash joule heating, microwave synthesis, and ultrasonic-assisted synthesis), highlighting their advantages and limitations. Carefully examining the process parameters, mechanisms, and environmental impacts of existing synthetic methods of graphite, we outline the progress and gaps. This review underscores the need for further research to refine the existing techniques, optimize process parameters, and develop scalable, environmentally friendly graphite production processes. Future research to be focused on novel highly abundant biomass feedstocks with high carbon content and easy processability. A comprehensive assessment of the environmental impact of the synthesis processes is crucial, including waste generation and disposal, to ensure the benefits of biomass-derived graphite do not come with unintended ecological consequences. Optimisation of carbonization and graphitisation techniques are essential to improve efficiency, reduce energy consumption, and enhance the quality of the resulting graphite materials.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"145 ","pages":"Pages 75-98"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24007202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphite forms the basis of a multibillion-dollar industry; obtained either by mining or by synthesis from petrochemicals with significant energy and materials footprints. Biomass is a carbon-negative and renewable precursor; therefore, obtaining graphite from bioresources is a step forward in the pursuit of sustainability. Herein, we review the advances in their synthesis following conventional (direct pyrolysis, activation, catalytic graphitization, and simultaneous activation-graphitization) and advanced methods (flash joule heating, microwave synthesis, and ultrasonic-assisted synthesis), highlighting their advantages and limitations. Carefully examining the process parameters, mechanisms, and environmental impacts of existing synthetic methods of graphite, we outline the progress and gaps. This review underscores the need for further research to refine the existing techniques, optimize process parameters, and develop scalable, environmentally friendly graphite production processes. Future research to be focused on novel highly abundant biomass feedstocks with high carbon content and easy processability. A comprehensive assessment of the environmental impact of the synthesis processes is crucial, including waste generation and disposal, to ensure the benefits of biomass-derived graphite do not come with unintended ecological consequences. Optimisation of carbonization and graphitisation techniques are essential to improve efficiency, reduce energy consumption, and enhance the quality of the resulting graphite materials.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.