Helicity correlation of neighboring dihadron

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics Letters B Pub Date : 2025-02-24 DOI:10.1016/j.physletb.2025.139346
Fei Huang , Tianbo Liu , Yu-Kun Song , Shu-Yi Wei
{"title":"Helicity correlation of neighboring dihadron","authors":"Fei Huang ,&nbsp;Tianbo Liu ,&nbsp;Yu-Kun Song ,&nbsp;Shu-Yi Wei","doi":"10.1016/j.physletb.2025.139346","DOIUrl":null,"url":null,"abstract":"<div><div>The spin correlation of final-state hadrons provides a novel platform to explore the hadronization mechanism of polarized partons in unpolarized high-energy collisions. In this work, we investigate the helicity correlation of two hadrons originating from the same single parton. The production of such a dihadron system is formally described by the dihadron fragmentation function, in which the helicity correlation between the two hadrons arise from both the long-distance nonperturbative physics and the perturbative QCD evolution. Beyond the extraction of the dihadron fragmentation function, we demonstrate that it is also a sensitive observable to the longitudinal spin transfer, characterized by the single hadron fragmentation function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn><mi>L</mi></mrow></msub></math></span>. This intriguing connection opens up new opportunities for understanding the spin dynamics of hadronization and provides a complementary approach to corresponding studies using polarized beams and targets.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"862 ","pages":"Article 139346"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325001066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The spin correlation of final-state hadrons provides a novel platform to explore the hadronization mechanism of polarized partons in unpolarized high-energy collisions. In this work, we investigate the helicity correlation of two hadrons originating from the same single parton. The production of such a dihadron system is formally described by the dihadron fragmentation function, in which the helicity correlation between the two hadrons arise from both the long-distance nonperturbative physics and the perturbative QCD evolution. Beyond the extraction of the dihadron fragmentation function, we demonstrate that it is also a sensitive observable to the longitudinal spin transfer, characterized by the single hadron fragmentation function G1L. This intriguing connection opens up new opportunities for understanding the spin dynamics of hadronization and provides a complementary approach to corresponding studies using polarized beams and targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
期刊最新文献
Prospects for measuring neutrino mass with 21-cm forest Helicity correlation of neighboring dihadron Equivalence of 1-loop RG flows in 4d Chern-Simons and integrable 2d sigma-models A representation transformation of parametric Feynman integrals Landscape of QCD vacuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1