Optimising thermoelectric coolers for battery thermal management in light electric vehicles

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2025-02-26 DOI:10.1016/j.apenergy.2025.125516
Sankhadeep Bhattacharyya, Quang Truong Dinh, Andrew McGordon
{"title":"Optimising thermoelectric coolers for battery thermal management in light electric vehicles","authors":"Sankhadeep Bhattacharyya,&nbsp;Quang Truong Dinh,&nbsp;Andrew McGordon","doi":"10.1016/j.apenergy.2025.125516","DOIUrl":null,"url":null,"abstract":"<div><div>The Battery Thermal Management System (BTMS) is critical for enhancing the performance and longevity of electric vehicle batteries. Due to their compactness, light electric vehicles (LEVs) have restrictions on BTMS size and weight. Thermoelectric coolers (TECs) have been known for their compactness and reliability and can be a potential solution for BTMS in LEVs. However, the integration of TECs in BTMS still lacks an optimal selection of TEC material, optimal BTMS design, and operational analysis, which are the key areas addressed in this study. First, a simplified cell model ideal for integration with TECs is developed, reflecting the temperature distribution in the cell. Simulations and BTMS performance analysis are then carried out to quantify the relationship between TEC current and cell average temperature and temperature difference under various heat generation and dissipation rates. The study also delves into the impact of TEC design parameters on BTMS performance, providing valuable insights for BTMS manufacturers to optimise LEV battery operation. It is found that the pellet height in TECs is crucial; directly impacting the TEC efficiency and power consumption and therefore must be selected according to the needs of the LEV. An approach for this optimal selection is provided in this study in the form of a multi-objective optimisation problem along with an example case. It is found that under regular operating conditions, an optimised TEC can save 5.89% of energy consumption over the standard TECs available off the shelf.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"386 ","pages":"Article 125516"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925002466","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Battery Thermal Management System (BTMS) is critical for enhancing the performance and longevity of electric vehicle batteries. Due to their compactness, light electric vehicles (LEVs) have restrictions on BTMS size and weight. Thermoelectric coolers (TECs) have been known for their compactness and reliability and can be a potential solution for BTMS in LEVs. However, the integration of TECs in BTMS still lacks an optimal selection of TEC material, optimal BTMS design, and operational analysis, which are the key areas addressed in this study. First, a simplified cell model ideal for integration with TECs is developed, reflecting the temperature distribution in the cell. Simulations and BTMS performance analysis are then carried out to quantify the relationship between TEC current and cell average temperature and temperature difference under various heat generation and dissipation rates. The study also delves into the impact of TEC design parameters on BTMS performance, providing valuable insights for BTMS manufacturers to optimise LEV battery operation. It is found that the pellet height in TECs is crucial; directly impacting the TEC efficiency and power consumption and therefore must be selected according to the needs of the LEV. An approach for this optimal selection is provided in this study in the form of a multi-objective optimisation problem along with an example case. It is found that under regular operating conditions, an optimised TEC can save 5.89% of energy consumption over the standard TECs available off the shelf.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Feasibility of integrating excess heat from power-to-methanol: Case study of a Danish district heating network Zero-carbon-emission electrochemistry-thermochemistry-assembled full-spectrum solar fuel production Energy efficiency analysis of microwave treatment in rocks: from mine-to-mill operations Routing and scheduling of mobile energy storage systems in active distribution network based on probabilistic voltage sensitivity analysis and Hall's theorem Optimising thermoelectric coolers for battery thermal management in light electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1