{"title":"Heat transfer coefficient for upward forced convective flows of heated supercritical carbon dioxide in vertical tubes","authors":"Kwun Ting Lau, Jiyun Zhao, Takashi Hibiki","doi":"10.1016/j.icheatmasstransfer.2025.108732","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate heat transfer prediction is crucial for optimizing supercritical power cycles. This study presents new Nusselt number correlations for forced convection heat transfer of supercritical carbon dioxide flowing upward in heated tubes. Existing correlations often suffer from reduced accuracy near the pseudocritical point. The study addresses this challenge by employing a systematic correlation modelling framework to develop region-specific correlations tailored to distinct fluid regions, namely liquid-like, near-pseudocritical, and gas-like regions. A novel interpolation methodology utilizing sigmoid functions is implemented to ensure smooth transitions between these regions. Furthermore, stability functions based on kinematic viscosity are introduced to enhance the stability of the correlations during iterative processes. The resulting three-variable correlation, incorporating the Reynolds number, Prandtl number, and a stability function, demonstrates significantly improved accuracy relative to existing correlations, achieving a maximum percentage error of 52 % and a mean absolute percentage error of 11 %. This work provides valuable tools for the design and optimization of supercritical power cycles, particularly during transient events in which precise heat transfer predictions are essential.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"163 ","pages":"Article 108732"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325001575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate heat transfer prediction is crucial for optimizing supercritical power cycles. This study presents new Nusselt number correlations for forced convection heat transfer of supercritical carbon dioxide flowing upward in heated tubes. Existing correlations often suffer from reduced accuracy near the pseudocritical point. The study addresses this challenge by employing a systematic correlation modelling framework to develop region-specific correlations tailored to distinct fluid regions, namely liquid-like, near-pseudocritical, and gas-like regions. A novel interpolation methodology utilizing sigmoid functions is implemented to ensure smooth transitions between these regions. Furthermore, stability functions based on kinematic viscosity are introduced to enhance the stability of the correlations during iterative processes. The resulting three-variable correlation, incorporating the Reynolds number, Prandtl number, and a stability function, demonstrates significantly improved accuracy relative to existing correlations, achieving a maximum percentage error of 52 % and a mean absolute percentage error of 11 %. This work provides valuable tools for the design and optimization of supercritical power cycles, particularly during transient events in which precise heat transfer predictions are essential.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.