The role of in situ and operando techniques in unraveling local electrochemical supercapacitor phenomena

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-11-01 DOI:10.1016/j.jiec.2024.10.077
Tholkappiyan Ramachandran , Ramesh Kumar Raji , Santhoshkumar Palanisamy , N. Renuka , K. Karuppasamy
{"title":"The role of in situ and operando techniques in unraveling local electrochemical supercapacitor phenomena","authors":"Tholkappiyan Ramachandran ,&nbsp;Ramesh Kumar Raji ,&nbsp;Santhoshkumar Palanisamy ,&nbsp;N. Renuka ,&nbsp;K. Karuppasamy","doi":"10.1016/j.jiec.2024.10.077","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the escalating demands for efficient energy storage solutions, the enhancement of current supercapacitor electrode materials and the innovation of advanced alternatives are paramount. Traditional electrochemical methods, which have their limitations in offering a deep understanding of local electrochemical activities, such as ion adsorption, intercalation as well as transport. To truly grasp, manage, and enhance the electrochemical capabilities within energy materials, it’s vital to use in situ and operando characterization techniques. These sophisticated techniques are key to gaining a thorough understanding of reaction pathways, mechanisms of degradation, and how materials behave when subjected to real-world conditions. In situ and operando techniques provide important information on how materials change over time, their redox reactions, the formation of the solid-electrolyte interface, other reactions occurring, and how ions move during operation. This article delves into the newest developments in these techniques, with a focus on their use in studying the structural integrity, dynamic characteristics, changes in chemical environment, and the physical changes of supercapacitor materials. It covers a range of experimental strategies, including X-ray, electron, neutron, optical, and scanning probe methods. The review provides detailed descriptions of each technique’s methodology and operating principles, with particular emphasis on the design of in situ cells. Representative studies utilizing these techniques are highlighted to offer a comprehensive overview of the current state of the field. By integrating these advanced characterization methods, researchers can gain deeper insights into local electrochemical phenomena, leading to the optimization and enhancement of supercapacitor performance. This review serves as a crucial resource for scientists and engineers dedicated to advancing the capabilities and reliability of energy storage systems. Additionally, it addresses current challenges and identifies future opportunities for further development in this rapidly evolving field.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"145 ","pages":"Pages 144-168"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X2400738X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the escalating demands for efficient energy storage solutions, the enhancement of current supercapacitor electrode materials and the innovation of advanced alternatives are paramount. Traditional electrochemical methods, which have their limitations in offering a deep understanding of local electrochemical activities, such as ion adsorption, intercalation as well as transport. To truly grasp, manage, and enhance the electrochemical capabilities within energy materials, it’s vital to use in situ and operando characterization techniques. These sophisticated techniques are key to gaining a thorough understanding of reaction pathways, mechanisms of degradation, and how materials behave when subjected to real-world conditions. In situ and operando techniques provide important information on how materials change over time, their redox reactions, the formation of the solid-electrolyte interface, other reactions occurring, and how ions move during operation. This article delves into the newest developments in these techniques, with a focus on their use in studying the structural integrity, dynamic characteristics, changes in chemical environment, and the physical changes of supercapacitor materials. It covers a range of experimental strategies, including X-ray, electron, neutron, optical, and scanning probe methods. The review provides detailed descriptions of each technique’s methodology and operating principles, with particular emphasis on the design of in situ cells. Representative studies utilizing these techniques are highlighted to offer a comprehensive overview of the current state of the field. By integrating these advanced characterization methods, researchers can gain deeper insights into local electrochemical phenomena, leading to the optimization and enhancement of supercapacitor performance. This review serves as a crucial resource for scientists and engineers dedicated to advancing the capabilities and reliability of energy storage systems. Additionally, it addresses current challenges and identifies future opportunities for further development in this rapidly evolving field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Editorial Board Editorial Board Production of alkyl levulinates as a versatile precursor by phosphomolybdate-impregnated g-C3N4 catalysts Green decoration of Pd nanoparticles on MXene/metal organic framework support for photocatalytic degradation of ofloxacin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1