{"title":"Self-healing and wave-absorbing functional coupling of nano-Fe3O4 hybridized microcapsules","authors":"Lina Xiao , Jielu Zhu , Ruifeng Cheng , Bingzhi Xiang","doi":"10.1016/j.jiec.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>As a common high-performance wave absorber, the application prospect of nano-Fe<sub>3</sub>O<sub>4</sub> in cementitious materials is limited due to its defects such as easy agglomeration and possible hydration reaction with cement clinker. In this study, self-healing and wave-absorbing functional coupling materials were synthesized by nano-Fe<sub>3</sub>O<sub>4</sub> hybridized microcapsules. The physical and chemical properties of nano-Fe<sub>3</sub>O<sub>4</sub> hybridized microcapsules were characterized by ESEM (Environmental scanning electron microscopy), XRD (X-ray diffractometer) and FTIR (Fourier transform infrared spectrum), etc. The self-healing properties of microcapsules were assessed. The electromagnetic parameters of microcapsules were measured, and the wave-absorbing performance of microcapsules with different matching thicknesses was assessed. The function coupling mechanism of self-healing and wave-absorbing of microcapsules hybridized by nano-Fe<sub>3</sub>O<sub>4</sub> was revealed. The findings revealed that the residual weights of FM0 and FM40 were 1.28 % and 16.44 %, respectively. The hybrid microcapsules demonstrated the amorphous structure of self-healing microcapsules and the crystal structure characteristics of nano-Fe<sub>3</sub>O<sub>4</sub>. The highest strength healing rate of cement mortar mixed with microcapsules was 34.2 %. The minimum reflection loss and the corresponding effective bandwidth of the nano-Fe<sub>3</sub>O<sub>4</sub> hybridized microcapsules with a thickness of 3 mm were −20.32 dB and 7.07 GHz, respectively. The nano-Fe<sub>3</sub>O<sub>4</sub> hybridized microcapsules with core–shell structure exhibit excellent wave-absorbing performance through the functional coupling of dielectric loss and magnetic loss.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"145 ","pages":"Pages 818-830"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24007421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a common high-performance wave absorber, the application prospect of nano-Fe3O4 in cementitious materials is limited due to its defects such as easy agglomeration and possible hydration reaction with cement clinker. In this study, self-healing and wave-absorbing functional coupling materials were synthesized by nano-Fe3O4 hybridized microcapsules. The physical and chemical properties of nano-Fe3O4 hybridized microcapsules were characterized by ESEM (Environmental scanning electron microscopy), XRD (X-ray diffractometer) and FTIR (Fourier transform infrared spectrum), etc. The self-healing properties of microcapsules were assessed. The electromagnetic parameters of microcapsules were measured, and the wave-absorbing performance of microcapsules with different matching thicknesses was assessed. The function coupling mechanism of self-healing and wave-absorbing of microcapsules hybridized by nano-Fe3O4 was revealed. The findings revealed that the residual weights of FM0 and FM40 were 1.28 % and 16.44 %, respectively. The hybrid microcapsules demonstrated the amorphous structure of self-healing microcapsules and the crystal structure characteristics of nano-Fe3O4. The highest strength healing rate of cement mortar mixed with microcapsules was 34.2 %. The minimum reflection loss and the corresponding effective bandwidth of the nano-Fe3O4 hybridized microcapsules with a thickness of 3 mm were −20.32 dB and 7.07 GHz, respectively. The nano-Fe3O4 hybridized microcapsules with core–shell structure exhibit excellent wave-absorbing performance through the functional coupling of dielectric loss and magnetic loss.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.