ML-Guided Curvilinear OPC: Fast, Accurate, and Manufacturable Curve Correction

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2025-01-09 DOI:10.1109/TSM.2025.3527514
Seohyun Kim;Shilong Zhang;Youngsoo Shin
{"title":"ML-Guided Curvilinear OPC: Fast, Accurate, and Manufacturable Curve Correction","authors":"Seohyun Kim;Shilong Zhang;Youngsoo Shin","doi":"10.1109/TSM.2025.3527514","DOIUrl":null,"url":null,"abstract":"In curvilinear optical proximity correction (OPC), each segment is modeled by a cubic Bézier curve, defined by two endpoints and two intermediate points. Iterative correction of these points is not trivial, and a simple heuristic (Chen et al., 2024) has been used but is not effective. A vertex placement error (VPE) is first introduced to replace edge placement error (EPE) in standard Manhattan OPC. Two machine learning models are applied for accurate curve correction. (1) An MLP is used to locate the new endpoints, while VPE from the previous iteration and a few PFT signals representing local light intensity are provided as inputs. (2) A VPE predictor, constructed with GCNs, is designed to output average (or maximum) VPE over a given layout clip. Once trained, it is used to identify intermediate points after new endpoints are fixed by MLP; this is done through gradient descent optimization such that VPE is minimized and curvature constraints are respected as much as possible. Experimental results demonstrate that the proposed curvilinear OPC reduces OPC iterations from 8 to 5 when average VPE is considered as a target or from 14 to 5 when maximum VPE is a target, with a final VPE reduction of about 5 to 6%.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"19-28"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10835245/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In curvilinear optical proximity correction (OPC), each segment is modeled by a cubic Bézier curve, defined by two endpoints and two intermediate points. Iterative correction of these points is not trivial, and a simple heuristic (Chen et al., 2024) has been used but is not effective. A vertex placement error (VPE) is first introduced to replace edge placement error (EPE) in standard Manhattan OPC. Two machine learning models are applied for accurate curve correction. (1) An MLP is used to locate the new endpoints, while VPE from the previous iteration and a few PFT signals representing local light intensity are provided as inputs. (2) A VPE predictor, constructed with GCNs, is designed to output average (or maximum) VPE over a given layout clip. Once trained, it is used to identify intermediate points after new endpoints are fixed by MLP; this is done through gradient descent optimization such that VPE is minimized and curvature constraints are respected as much as possible. Experimental results demonstrate that the proposed curvilinear OPC reduces OPC iterations from 8 to 5 when average VPE is considered as a target or from 14 to 5 when maximum VPE is a target, with a final VPE reduction of about 5 to 6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Editorial Table of Contents Editorial IEEE Transactions on Semiconductor Manufacturing Information for Authors Call for Papers for a Special Issue of IEEE Transactions on Electron Devices on "Wide Band Gap Semiconductors for Automotive Applications"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1