L1Quad: L1 Adaptive Augmentation of Geometric Control for Agile Quadrotors With Performance Guarantees

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2025-01-03 DOI:10.1109/TCST.2024.3521182
Zhuohuan Wu;Sheng Cheng;Pan Zhao;Aditya Gahlawat;Kasey A. Ackerman;Arun Lakshmanan;Chengyu Yang;Jiahao Yu;Naira Hovakimyan
{"title":"L1Quad: L1 Adaptive Augmentation of Geometric Control for Agile Quadrotors With Performance Guarantees","authors":"Zhuohuan Wu;Sheng Cheng;Pan Zhao;Aditya Gahlawat;Kasey A. Ackerman;Arun Lakshmanan;Chengyu Yang;Jiahao Yu;Naira Hovakimyan","doi":"10.1109/TCST.2024.3521182","DOIUrl":null,"url":null,"abstract":"Quadrotors that can operate predictably in the presence of imperfect model knowledge and external disturbances are crucial in safety-critical applications. We present <inline-formula> <tex-math>$\\boldsymbol {\\mathcal {L}}_{1}$ </tex-math></inline-formula>Quad, a control architecture that ensures uniformly bounded transient response of the quadrotor’s uncertain dynamics on the special Euclidean group SE(3). By leveraging the geometric controller and the <inline-formula> <tex-math>$\\boldsymbol {\\mathcal {L}}_{1}$ </tex-math></inline-formula> adaptive controller, the <inline-formula> <tex-math>$\\boldsymbol {\\mathcal {L}}_{1}$ </tex-math></inline-formula>Quad architecture provides a theoretically justified framework for the design and analysis of quadrotor’s tracking controller in the presence of nonlinear (time- and state-dependent) uncertainties on both the translational and rotational dynamics. In addition, we validate the performance of the <inline-formula> <tex-math>$\\boldsymbol {\\mathcal {L}}_{1}$ </tex-math></inline-formula>Quad architecture through extensive experiments for 11 types of uncertainties across various trajectories. The results demonstrate that the <inline-formula> <tex-math>$\\boldsymbol {\\mathcal {L}}_{1}$ </tex-math></inline-formula>Quad can achieve consistently small tracking errors despite the uncertainties and disturbances and significantly outperforms existing state-of-the-art controllers.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"597-612"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820973","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820973/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Quadrotors that can operate predictably in the presence of imperfect model knowledge and external disturbances are crucial in safety-critical applications. We present $\boldsymbol {\mathcal {L}}_{1}$ Quad, a control architecture that ensures uniformly bounded transient response of the quadrotor’s uncertain dynamics on the special Euclidean group SE(3). By leveraging the geometric controller and the $\boldsymbol {\mathcal {L}}_{1}$ adaptive controller, the $\boldsymbol {\mathcal {L}}_{1}$ Quad architecture provides a theoretically justified framework for the design and analysis of quadrotor’s tracking controller in the presence of nonlinear (time- and state-dependent) uncertainties on both the translational and rotational dynamics. In addition, we validate the performance of the $\boldsymbol {\mathcal {L}}_{1}$ Quad architecture through extensive experiments for 11 types of uncertainties across various trajectories. The results demonstrate that the $\boldsymbol {\mathcal {L}}_{1}$ Quad can achieve consistently small tracking errors despite the uncertainties and disturbances and significantly outperforms existing state-of-the-art controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
Table of Contents Optimal Cyclic Control of a Structurally Constrained Morphing Energy-Harvesting Kite Using an Experimentally Validated Simulation Model L1Quad: L1 Adaptive Augmentation of Geometric Control for Agile Quadrotors With Performance Guarantees Table of Contents Switched Hybrid Control for Spacecraft Attitude Control With Flexible and Guaranteed Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1