Prevention of Moisture Invasion by Flow Isolation Device (FID) for Mask Automatic Storage System (Stocker Room) in a Semiconductor Fabrication Plant (Fab)

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-18 DOI:10.1109/TSM.2024.3492173
Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Jhang-Kun Li;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett
{"title":"Prevention of Moisture Invasion by Flow Isolation Device (FID) for Mask Automatic Storage System (Stocker Room) in a Semiconductor Fabrication Plant (Fab)","authors":"Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Jhang-Kun Li;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett","doi":"10.1109/TSM.2024.3492173","DOIUrl":null,"url":null,"abstract":"recent developments in semiconductor manufacturing have seen feature sizes reduce to as small as 3 nm. It is predicted that 2 nm, or even 1 nanometer will be achieved soon. Improving the level of cleanliness of the wafer mask during manufacturing can lead to improved product yield and quality. The quality of lithography technology and the reticle is one of the most important items in the wafer manufacturing process. The cleanliness of this process directly affects the wafer quality and yield. Because the wafer manufacturing process involves the stacking of multiple reticles through lithography technology, semiconductor factories mostly use a reticle stocker room to store the photomasks. However, the reticle is susceptible to defects caused by moisture, particles, and molecular contaminants in the air. Therefore, the reticle stocker room environment requires high cleanliness and humidity control. In this study, the flow stream lines, velocity and humidity fields associated with a flow isolation device (FID) installed in a reticle stocker room were analyzed with the assistance of computational fluid dynamics (CFD) software developed by ANSYS Fluent. Different velocity (V=1 m/s, 1.5 m/s, 2 m/s) of the flow isolation device were examined. The results show that under the same velocity (V=1 m/s), the wider the outlet width of the flow isolation device (W <inline-formula> <tex-math>${=}0$ </tex-math></inline-formula>.2 m), the higher the isolation efficiency (<inline-formula> <tex-math>$\\eta {=}83.9$ </tex-math></inline-formula>%). The results also show that the faster the velocity of the flow isolation device (V =2 m/s), the better the isolation efficiency (<inline-formula> <tex-math>$\\eta {=}88.2$ </tex-math></inline-formula>%) under the same outlet width (W <inline-formula> <tex-math>${=}0$ </tex-math></inline-formula>.1 m). The use of the flow isolation device can effectively reduce the supply of clean dry air (CDA) by up to 40%, greatly reducing energy consumption during semiconductor manufacturing. According to the results of this study, when using both a hollow fiber adsorption dryer and a flow isolation device with a width of 0.1 m and an outlet wind speed of 2 m/s, it can save 118,514 kWh per year, and its energy saving rate is 92.03%.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"57-64"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10756588/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

recent developments in semiconductor manufacturing have seen feature sizes reduce to as small as 3 nm. It is predicted that 2 nm, or even 1 nanometer will be achieved soon. Improving the level of cleanliness of the wafer mask during manufacturing can lead to improved product yield and quality. The quality of lithography technology and the reticle is one of the most important items in the wafer manufacturing process. The cleanliness of this process directly affects the wafer quality and yield. Because the wafer manufacturing process involves the stacking of multiple reticles through lithography technology, semiconductor factories mostly use a reticle stocker room to store the photomasks. However, the reticle is susceptible to defects caused by moisture, particles, and molecular contaminants in the air. Therefore, the reticle stocker room environment requires high cleanliness and humidity control. In this study, the flow stream lines, velocity and humidity fields associated with a flow isolation device (FID) installed in a reticle stocker room were analyzed with the assistance of computational fluid dynamics (CFD) software developed by ANSYS Fluent. Different velocity (V=1 m/s, 1.5 m/s, 2 m/s) of the flow isolation device were examined. The results show that under the same velocity (V=1 m/s), the wider the outlet width of the flow isolation device (W ${=}0$ .2 m), the higher the isolation efficiency ( $\eta {=}83.9$ %). The results also show that the faster the velocity of the flow isolation device (V =2 m/s), the better the isolation efficiency ( $\eta {=}88.2$ %) under the same outlet width (W ${=}0$ .1 m). The use of the flow isolation device can effectively reduce the supply of clean dry air (CDA) by up to 40%, greatly reducing energy consumption during semiconductor manufacturing. According to the results of this study, when using both a hollow fiber adsorption dryer and a flow isolation device with a width of 0.1 m and an outlet wind speed of 2 m/s, it can save 118,514 kWh per year, and its energy saving rate is 92.03%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Editorial Table of Contents Editorial IEEE Transactions on Semiconductor Manufacturing Information for Authors Call for Papers for a Special Issue of IEEE Transactions on Electron Devices on "Wide Band Gap Semiconductors for Automotive Applications"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1