Triggering the phase transition of molybdenum di-selenide (MoSe2) 1T@2H by introducing copper (Cu+): experimental insights and DFT analysis for the hydrogen evolution reaction†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2025-02-04 DOI:10.1039/D4SE01623H
Gautham Kumar G, P. Balaji Bhargav, C. Balaji and Shobana Priyanka D
{"title":"Triggering the phase transition of molybdenum di-selenide (MoSe2) 1T@2H by introducing copper (Cu+): experimental insights and DFT analysis for the hydrogen evolution reaction†","authors":"Gautham Kumar G, P. Balaji Bhargav, C. Balaji and Shobana Priyanka D","doi":"10.1039/D4SE01623H","DOIUrl":null,"url":null,"abstract":"<p >The quest to find an effective non-precious metal-based catalyst for the hydrogen evolution process has recently garnered widespread attention. Platinum (Pt) and other platinoids are the preferred catalyst for the hydrogen evolution reaction (HER). However, their widespread application is restricted by the scarcity of rare earth reserves and the consequent elevated costs. In this work, we synthesized a distinctive 1T/2H phase structure <em>via</em> a facile hydrothermal technique. Pristine MoSe<small><sub>2</sub></small> and Cu–MoSe<small><sub>2</sub></small> were deposited on a carbon cloth (CC) and were directly employed as electrodes in HERs, without the use of binders. The structures and basal planes of the as-prepared pristine MoSe<small><sub>2</sub></small>@CC as well as 3% and 5%Cu–MoSe<small><sub>2</sub></small>@CC samples were analysed <em>via</em> XRD, and their morphology was examined using field emission scanning electron microscopy (FESEM), revealing that each carbon fibre's surface was evenly covered with wrinkled nano petals in the shape of nanosheets. Elemental mapping using energy dispersive X-ray spectroscopy (EDX) revealed the coexistence of Cu, Mo, and Se, uniformly dispersed over the sample, and their corresponding energy states and binding energies were analysed using X-ray photoelectron spectroscopy (XPS). Findings indicated a substantial reduction in binding energy when copper was present on MoSe<small><sub>2</sub></small>, which caused the metallic-semiconductor (1T/2H) phase to dominate. This meticulously developed architecture when coated on a carbon fibre substrate exhibited remarkable HER activity with a low onset potential of −113 mV <em>vs.</em> RHE (reversible hydrogen electrode), a Tafel slope of 87.2 mV per decade and excellent cycle stability of 80 h. In addition, density functional theory (DFT) studies conducted on the novel structure predicted that the introduction of Cu<small><sup>+</sup></small> ions into the MoSe<small><sub>2</sub></small> monolayer can make interfacial semiconducting MoSe<small><sub>2</sub></small> transform into metallic MoSe<small><sub>2</sub></small>. This transformation is beneficial for speeding up charge transfer between the interfaces, promoting H atom adsorption and desorption kinetics and thus accelerating sluggish HER kinetics, thereby enhancing its catalytic performance. In brief, the present findings provide experimental and theoretical insights into developing advanced functional catalysts using phase engineering for energy-conversion applications.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 5","pages":" 1338-1352"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01623h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quest to find an effective non-precious metal-based catalyst for the hydrogen evolution process has recently garnered widespread attention. Platinum (Pt) and other platinoids are the preferred catalyst for the hydrogen evolution reaction (HER). However, their widespread application is restricted by the scarcity of rare earth reserves and the consequent elevated costs. In this work, we synthesized a distinctive 1T/2H phase structure via a facile hydrothermal technique. Pristine MoSe2 and Cu–MoSe2 were deposited on a carbon cloth (CC) and were directly employed as electrodes in HERs, without the use of binders. The structures and basal planes of the as-prepared pristine MoSe2@CC as well as 3% and 5%Cu–MoSe2@CC samples were analysed via XRD, and their morphology was examined using field emission scanning electron microscopy (FESEM), revealing that each carbon fibre's surface was evenly covered with wrinkled nano petals in the shape of nanosheets. Elemental mapping using energy dispersive X-ray spectroscopy (EDX) revealed the coexistence of Cu, Mo, and Se, uniformly dispersed over the sample, and their corresponding energy states and binding energies were analysed using X-ray photoelectron spectroscopy (XPS). Findings indicated a substantial reduction in binding energy when copper was present on MoSe2, which caused the metallic-semiconductor (1T/2H) phase to dominate. This meticulously developed architecture when coated on a carbon fibre substrate exhibited remarkable HER activity with a low onset potential of −113 mV vs. RHE (reversible hydrogen electrode), a Tafel slope of 87.2 mV per decade and excellent cycle stability of 80 h. In addition, density functional theory (DFT) studies conducted on the novel structure predicted that the introduction of Cu+ ions into the MoSe2 monolayer can make interfacial semiconducting MoSe2 transform into metallic MoSe2. This transformation is beneficial for speeding up charge transfer between the interfaces, promoting H atom adsorption and desorption kinetics and thus accelerating sluggish HER kinetics, thereby enhancing its catalytic performance. In brief, the present findings provide experimental and theoretical insights into developing advanced functional catalysts using phase engineering for energy-conversion applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过引入铜 (Cu+) 触发二硒化钼 (MoSe2) 1T@2H 的相变:氢气进化反应的实验启示和 DFT 分析†。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Correction: Photocatalytic CO2 reduction to methanol integrated with the oxidative coupling of thiols for S–X (X = S, C) bond formation over an Fe3O4/BiVO4 composite Back cover Triggering the phase transition of molybdenum di-selenide (MoSe2) 1T@2H by introducing copper (Cu+): experimental insights and DFT analysis for the hydrogen evolution reaction† The value of enhanced geothermal systems for the energy transition in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1