On the Growth of Tomato and Pepper Plants under Aseptic Conditions with Metal Nanoparticles and Chitosan

IF 0.8 Q3 Engineering Nanotechnologies in Russia Pub Date : 2025-02-25 DOI:10.1134/S2635167624602006
N. N. Glushchenko, O. A. Bogoslovskaya, I. P. Olkhovskaya, G. S. Nechitaylo
{"title":"On the Growth of Tomato and Pepper Plants under Aseptic Conditions with Metal Nanoparticles and Chitosan","authors":"N. N. Glushchenko,&nbsp;O. A. Bogoslovskaya,&nbsp;I. P. Olkhovskaya,&nbsp;G. S. Nechitaylo","doi":"10.1134/S2635167624602006","DOIUrl":null,"url":null,"abstract":"<p>This work presents the results of comparative studies of the effect of iron, zinc, copper nanoparticles (NPs) and their compositions, and chitosan in nutrient media on seed germination and the morphophysiological parameters of tomatoes and peppers. It is found that for nutrient media containing chitosan and metal NPs instead of salts of these elements, the germination of pepper seeds increased on average by 3–7% and tomato seeds by 1.4–2.8 times compared to the germination of seeds on standard Murashige—Skoog medium (control), depending on the concentration, element, and combination with chitosan. The introduction of metal NPs and chitosan into the nutrient media for the cultivation of tomato and pepper plants has an insignificant effect on a change in root length, but promotes an increase in its activity, for example, for Fe NPs at a concentration of 3 mg/L by 2.24 times (<i>p</i> ≤ 0.05), in combination with chitosan by 2.44 times (<i>p</i> ≤ 0.05) compared to the control. Plant material prepared on nutrient media with metal NPs and chitosan in aseptic conditions, planted into the soil, allows an increase in the yield of tomatoes by 10–15% and peppers by 2 times.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 5","pages":"719 - 725"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the results of comparative studies of the effect of iron, zinc, copper nanoparticles (NPs) and their compositions, and chitosan in nutrient media on seed germination and the morphophysiological parameters of tomatoes and peppers. It is found that for nutrient media containing chitosan and metal NPs instead of salts of these elements, the germination of pepper seeds increased on average by 3–7% and tomato seeds by 1.4–2.8 times compared to the germination of seeds on standard Murashige—Skoog medium (control), depending on the concentration, element, and combination with chitosan. The introduction of metal NPs and chitosan into the nutrient media for the cultivation of tomato and pepper plants has an insignificant effect on a change in root length, but promotes an increase in its activity, for example, for Fe NPs at a concentration of 3 mg/L by 2.24 times (p ≤ 0.05), in combination with chitosan by 2.44 times (p ≤ 0.05) compared to the control. Plant material prepared on nutrient media with metal NPs and chitosan in aseptic conditions, planted into the soil, allows an increase in the yield of tomatoes by 10–15% and peppers by 2 times.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
期刊最新文献
Editorial Editorial Optimization of the Pre-sowing Treatment of Rice Seeds Using Nanotechnology Analysis of the Allelic Structure of Photoperiodism Genes E1–E4 in Soybean Collections and Its Impact on the Timing and Duration of Flowering under the Growing Conditions of the Omsk Oblast Antibacterial Effect of Nanocomposites Based on Nanoparticles of Chalcogens and Metals in Natural Polymer Matrices in Relation to the Phytopathogen Clavibacter sepedonicus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1