Homa Maleki, Rouhollah Semnani Rahbar, Sajjad Azimi, Thomas Schneiders, Caroline Emonts, Thomas Gries
{"title":"Optimizing Thermo-mechanical and Shape-Memory Properties in Nanofibrous Yarns Through Twist Variation and Core–Shell Structure","authors":"Homa Maleki, Rouhollah Semnani Rahbar, Sajjad Azimi, Thomas Schneiders, Caroline Emonts, Thomas Gries","doi":"10.1007/s12221-025-00857-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to optimize the thermo-mechanical properties and shape-memory effect of twisted nanofibrous yarns featuring a core–shell structure for potential integration into thermo-responsive smart textiles via conventional processing methods, such as weaving and knitting. Twisted shape-memory polyurethane (SMPU) yarns were fabricated utilizing a double-nozzle electrospinning device, and the effects of twist amount and core–shell configuration on their structural, mechanical, and shape-memory properties were examined. Morphological analysis confirmed the production of uniform yarns with twist angles ranging from 7 to 21°, while differential scanning calorimetry (DSC) thermograms indicated a transition temperature of approximately 44 °C. Increased levels of twist resulted in a significant rise in maximum stress, approximately 36%, alongside an enhancement in Young’s modulus of about 30%, with elongation at break values within the range of 140% to 180%. The thermo-mechanical behavior was assessed at 50% and 100% strain over three cycles, demonstrating improved shape fixity and recovery with increased twist levels. Although exhibiting lower mechanical strength, core–shell yarns displayed comparable shape-memory performance to their single counterparts. These findings contribute valuable insights into the optimization of electrospun yarn structures for enhanced shape-memory functionality in the context of smart textiles.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 2","pages":"607 - 619"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00857-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to optimize the thermo-mechanical properties and shape-memory effect of twisted nanofibrous yarns featuring a core–shell structure for potential integration into thermo-responsive smart textiles via conventional processing methods, such as weaving and knitting. Twisted shape-memory polyurethane (SMPU) yarns were fabricated utilizing a double-nozzle electrospinning device, and the effects of twist amount and core–shell configuration on their structural, mechanical, and shape-memory properties were examined. Morphological analysis confirmed the production of uniform yarns with twist angles ranging from 7 to 21°, while differential scanning calorimetry (DSC) thermograms indicated a transition temperature of approximately 44 °C. Increased levels of twist resulted in a significant rise in maximum stress, approximately 36%, alongside an enhancement in Young’s modulus of about 30%, with elongation at break values within the range of 140% to 180%. The thermo-mechanical behavior was assessed at 50% and 100% strain over three cycles, demonstrating improved shape fixity and recovery with increased twist levels. Although exhibiting lower mechanical strength, core–shell yarns displayed comparable shape-memory performance to their single counterparts. These findings contribute valuable insights into the optimization of electrospun yarn structures for enhanced shape-memory functionality in the context of smart textiles.
A. Wolfler, A. Giannini, Martina Finistrella, I. Salvo, E. Calderini, G. Frasson, I. Dall’Oglio, Michela Di Furia, Rossella Iuzzolino, M. Musicco, J. Latour
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers