The Freundlich isotherm equation best represents phosphate sorption across soil orders and land use types in tropical soils of Puerto Rico

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2025-02-26 DOI:10.1007/s10533-025-01218-7
Daniela Yaffar, Julia Brenner, Anthony P. Walker, Matthew E. Craig, Elliot Vaughan, Erika Marín-Spiotta, Manuel Matos, Samuel Rios, Melanie A. Mayes
{"title":"The Freundlich isotherm equation best represents phosphate sorption across soil orders and land use types in tropical soils of Puerto Rico","authors":"Daniela Yaffar,&nbsp;Julia Brenner,&nbsp;Anthony P. Walker,&nbsp;Matthew E. Craig,&nbsp;Elliot Vaughan,&nbsp;Erika Marín-Spiotta,&nbsp;Manuel Matos,&nbsp;Samuel Rios,&nbsp;Melanie A. Mayes","doi":"10.1007/s10533-025-01218-7","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass production in the lowland wet tropical forest is greater than in any other biome, and it is typically limited by soil phosphorus (P) availability. However, the mechanisms involved in the P cycle remain poorly represented in Earth System Models (ESMs). Soil P sorption processes are key in the P cycle and for understanding the extent of P limitation for plant productivity. Currently, a few ESMs include isotherm equations to model these processes. Although the Langmuir equation is widely cited, other isotherm equations may better describe sorption in tropical soils. Here, we use a diverse range of soil samples from Puerto Rico to test the validity of the Langmuir, Freundlich, and Temkin equation. We found that across four soil orders (Inceptisols, Mollisols, Oxisols, Ultisols), and forested and cultivated land use types, the Freundlich equation best represented soil P sorption. Furthermore, the Langmuir and the Temkin equations poorly represent soil P adsorption, especially at low P concentrations. Specifically, the Langmuir equation underestimated soil P adsorption by 40% and the Temkin equation overestimated adsorption by 76%. We also found, as expected, that soil clay content and pH were the most important parameters explaining the variability of the Freundlich (<i>K</i><sub><i>f</i></sub>) constant. Greater clay content and lower pH, common in highly weathered Ultisols and Oxisols which are abundant in the tropics, led to greater <i>K</i><sub><i>f</i></sub> values. Overall, our results suggest that a diversity of soils can prompt underestimation of P sorption when using the Langmuir isotherm, which leads to an overestimation of available P that can have repercussions on ESM predictions of the P cycle and tropical forest productivity.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01218-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01218-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass production in the lowland wet tropical forest is greater than in any other biome, and it is typically limited by soil phosphorus (P) availability. However, the mechanisms involved in the P cycle remain poorly represented in Earth System Models (ESMs). Soil P sorption processes are key in the P cycle and for understanding the extent of P limitation for plant productivity. Currently, a few ESMs include isotherm equations to model these processes. Although the Langmuir equation is widely cited, other isotherm equations may better describe sorption in tropical soils. Here, we use a diverse range of soil samples from Puerto Rico to test the validity of the Langmuir, Freundlich, and Temkin equation. We found that across four soil orders (Inceptisols, Mollisols, Oxisols, Ultisols), and forested and cultivated land use types, the Freundlich equation best represented soil P sorption. Furthermore, the Langmuir and the Temkin equations poorly represent soil P adsorption, especially at low P concentrations. Specifically, the Langmuir equation underestimated soil P adsorption by 40% and the Temkin equation overestimated adsorption by 76%. We also found, as expected, that soil clay content and pH were the most important parameters explaining the variability of the Freundlich (Kf) constant. Greater clay content and lower pH, common in highly weathered Ultisols and Oxisols which are abundant in the tropics, led to greater Kf values. Overall, our results suggest that a diversity of soils can prompt underestimation of P sorption when using the Langmuir isotherm, which leads to an overestimation of available P that can have repercussions on ESM predictions of the P cycle and tropical forest productivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
The Freundlich isotherm equation best represents phosphate sorption across soil orders and land use types in tropical soils of Puerto Rico Detailed controls on biomineralization in an adult echinoderm: skeletal carbonate mineralogy of the New Zealand sand dollar (Fellaster zelandiae) Irradiance and biofilm age control daytime and nighttime macronutrient cycling in stream mesocosms Controls on the respiratory quotient of organic matter decomposition across ecosystems Trace metals in natural lakes: seasonal variation of manganese, cobalt, nickel, copper and zinc speciation in lakes of different trophic states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1