Fangxiang He, Yanhui Wang, Haimei Huang, Liangwei Du
{"title":"Synergistic herbicidal effects of Nelumbo nucifera Gaertn. leaf extract-silver nanoparticles against Bidens pilosa L.","authors":"Fangxiang He, Yanhui Wang, Haimei Huang, Liangwei Du","doi":"10.1186/s40538-025-00741-x","DOIUrl":null,"url":null,"abstract":"<div><p>The risks posed by conventional herbicides have driven research toward environmentally friendly alternatives for sustainable agriculture. We synthesized silver nanoparticles (AgNPs) using aqueous extracts from the allelopathic plant <i>Nelumbo nucifera</i> Gaertn. (lotus) leaves, and their herbicidal activities were investigated against farmland weeds. The lotus-assisted AgNPs were characterized using ultraviolet–visible (UV–Vis) spectroscopy, <i>X</i>-ray diffraction (XRD), and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) band at 459 nm observed from the UV–Vis spectrum confirmed the successful synthesis of AgNPs. The hydrodynamic diameter of the AgNPs, as determined by the dynamic light scattering (DLS) measurement, was 105.1 nm, with a polydispersity index of 0.196. XRD results confirmed the synthesized AgNPs were proven to be crystalline with an average crystallite size of 18.62 nm. TEM analyses revealed that the AgNPs exhibited a spherical morphology with an average particle size of 12.87 nm. The herbicidal activities against <i>Bidens pilosa</i> L. of these lotus-mediated AgNPs were tested using both the Petri dish method and the soil irrigation method. The plant-derived AgNPs demonstrated a greater inhibitory effect on the seed germination and seedling growth of <i>B. pilosa</i> than the lotus extract. The results from herbicidal tests demonstrated that the synergetic herbicidal activity was realized after combining lotus extract with AgNPs. This study provided a new alternative to synthesize AgNPs by allelopathic plants, which could be used as botanical nanoherbicides for weed management in sustainable agriculture.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00741-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00741-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The risks posed by conventional herbicides have driven research toward environmentally friendly alternatives for sustainable agriculture. We synthesized silver nanoparticles (AgNPs) using aqueous extracts from the allelopathic plant Nelumbo nucifera Gaertn. (lotus) leaves, and their herbicidal activities were investigated against farmland weeds. The lotus-assisted AgNPs were characterized using ultraviolet–visible (UV–Vis) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) band at 459 nm observed from the UV–Vis spectrum confirmed the successful synthesis of AgNPs. The hydrodynamic diameter of the AgNPs, as determined by the dynamic light scattering (DLS) measurement, was 105.1 nm, with a polydispersity index of 0.196. XRD results confirmed the synthesized AgNPs were proven to be crystalline with an average crystallite size of 18.62 nm. TEM analyses revealed that the AgNPs exhibited a spherical morphology with an average particle size of 12.87 nm. The herbicidal activities against Bidens pilosa L. of these lotus-mediated AgNPs were tested using both the Petri dish method and the soil irrigation method. The plant-derived AgNPs demonstrated a greater inhibitory effect on the seed germination and seedling growth of B. pilosa than the lotus extract. The results from herbicidal tests demonstrated that the synergetic herbicidal activity was realized after combining lotus extract with AgNPs. This study provided a new alternative to synthesize AgNPs by allelopathic plants, which could be used as botanical nanoherbicides for weed management in sustainable agriculture.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.