Preparation of rGO/Cu NPs Cotton Sensor with a Three-Dimensional Conductive Network Structure for Efficient Strain Sensing Performance via Co-impregnation One-Bath Reduction Method

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2025-02-07 DOI:10.1007/s12221-024-00840-w
Xueting Zhang, Liangyu Wang, Xiaohong Gao, Caijiao Yu, Xuli Yang, Yuwen Bao, Qixia Liu
{"title":"Preparation of rGO/Cu NPs Cotton Sensor with a Three-Dimensional Conductive Network Structure for Efficient Strain Sensing Performance via Co-impregnation One-Bath Reduction Method","authors":"Xueting Zhang,&nbsp;Liangyu Wang,&nbsp;Xiaohong Gao,&nbsp;Caijiao Yu,&nbsp;Xuli Yang,&nbsp;Yuwen Bao,&nbsp;Qixia Liu","doi":"10.1007/s12221-024-00840-w","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electronic devices such as wearable strain sensors have attracted great attention in health monitoring systems. However, there are numerous challenges associated with the practical application of flexible strain sensors, including insufficient sensitivity, poor durability and stability, high manufacturing costs, complex signal processing, and integration issues. This study employed a straightforward and cost-effective co-impregnation one-bath reduction process to prepare a flexible strain sensor with high sensitivity, good responsiveness, and stability. Silane coupling agent KH-560 was employed for the modification of cotton knitted fabric, thereby enhancing the bonding strength between the cotton and reduced graphene oxide (rGO)/copper nanoparticles (Cu NPs). The rGO and Cu NPs were composited and loaded onto the surface of the modified cotton, with Cu NPs serving as connection points that adhere between the rGO surface and sheets, thereby forming a unique three-dimensional conductive network structure on the cotton. The fabrication of the rGO/Cu NPs/cotton sensor was optimized through single-factor and orthogonal experiments, with the objective of improving its sensitivity and stability. The rGO/Cu NPs/cotton sensor shows effective strain sensing for tensile strains ranging from 0 to 15% in both the horizontal and vertical directions, exhibiting high responsiveness at stretching speeds of 10–50 mm/min and maintaining stability after 100 cycles. Moreover, the rGO/Cu NPs/cotton sensor is capable of accurately detecting the degree of curvature of different joints during human movement and also exhibits a robust response to facial muscle movements.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 2","pages":"559 - 575"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00840-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible electronic devices such as wearable strain sensors have attracted great attention in health monitoring systems. However, there are numerous challenges associated with the practical application of flexible strain sensors, including insufficient sensitivity, poor durability and stability, high manufacturing costs, complex signal processing, and integration issues. This study employed a straightforward and cost-effective co-impregnation one-bath reduction process to prepare a flexible strain sensor with high sensitivity, good responsiveness, and stability. Silane coupling agent KH-560 was employed for the modification of cotton knitted fabric, thereby enhancing the bonding strength between the cotton and reduced graphene oxide (rGO)/copper nanoparticles (Cu NPs). The rGO and Cu NPs were composited and loaded onto the surface of the modified cotton, with Cu NPs serving as connection points that adhere between the rGO surface and sheets, thereby forming a unique three-dimensional conductive network structure on the cotton. The fabrication of the rGO/Cu NPs/cotton sensor was optimized through single-factor and orthogonal experiments, with the objective of improving its sensitivity and stability. The rGO/Cu NPs/cotton sensor shows effective strain sensing for tensile strains ranging from 0 to 15% in both the horizontal and vertical directions, exhibiting high responsiveness at stretching speeds of 10–50 mm/min and maintaining stability after 100 cycles. Moreover, the rGO/Cu NPs/cotton sensor is capable of accurately detecting the degree of curvature of different joints during human movement and also exhibits a robust response to facial muscle movements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Rapid Determination of Cellulose, Hemicellulose and Lignin Content in Hemp Fibers Using Near-Infrared Spectroscopy Composite Fiber Membrane with Janus Structure via Electrospinning Technique and its Separation and Antibacterial Properties Preparation of rGO/Cu NPs Cotton Sensor with a Three-Dimensional Conductive Network Structure for Efficient Strain Sensing Performance via Co-impregnation One-Bath Reduction Method Thermo-physiological Comfort Properties of Neem Herbal Extract Finished Synthetic Fabrics Investigation of Dyeing Behaviors of Bio-mordanted Wool Fabric Dyed with Natural Dye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1