Abdulaziz Bentalib, Dalia A. Ali, Maher M. Alrashed, Ahmed A. Ibrahim, Alaaddin M. M. Saeed, Anis H. Fakeeha, Ahmed E. Abasaeed, Rawesh Kumar, Ahmed S. Al-Fatesh
{"title":"Tailoring Ni + Sr-MgO Catalysts for Efficient Dry Reforming of Methane: A Performance Study","authors":"Abdulaziz Bentalib, Dalia A. Ali, Maher M. Alrashed, Ahmed A. Ibrahim, Alaaddin M. M. Saeed, Anis H. Fakeeha, Ahmed E. Abasaeed, Rawesh Kumar, Ahmed S. Al-Fatesh","doi":"10.1007/s10562-025-04966-1","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper examines the performance of strontium (Sr) promoted nickel (Ni) catalysts supported on magnesium oxide (MgO) in the dry reforming of methane (DRM) into syngas. The characterization of these catalysts is carried out using a range of analytical techniques, including measurements of surface area and porosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR), temperature-programmed oxidation (TPO) and desorption (TPD) studies. The concentration of active sites, as well as the presence of acid and basic sites on the catalyst surface, are the primary factors influencing the catalytic activity of the 5Ni + xSr-MgO catalysts (where x = 1, 2, 3, and 4 wt%). Ni, supported over MgO, has few active sites and lacks a strong basic site, which results in minimum catalytic activity. Adding 1–4 wt% Sr over 5Ni-MgO induces the formation of higher concentrations of active sites and an increased population of strong basic sites. At 3 wt% Sr loading, concentration of active sits, strong basic sites, and strong acid sites are optimum which can activate CH<sub>4</sub> and CO<sub>2</sub> timely for DRM rather than coke deposition. So, 5Ni + 3Sr-MgO achieved 58.4% CH<sub>4</sub> conversion (with H<sub>2</sub>/CO ratio 1.1) at 700 <sup>°</sup>C and ~ 82% CH<sub>4</sub> conversion at 750 <sup>°</sup>C. This study offers insights for turning a cheap catalyst system (5Ni-MgO) into a high-performance catalyst by optimum loading of Sr promotor.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04966-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper examines the performance of strontium (Sr) promoted nickel (Ni) catalysts supported on magnesium oxide (MgO) in the dry reforming of methane (DRM) into syngas. The characterization of these catalysts is carried out using a range of analytical techniques, including measurements of surface area and porosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H2-TPR), temperature-programmed oxidation (TPO) and desorption (TPD) studies. The concentration of active sites, as well as the presence of acid and basic sites on the catalyst surface, are the primary factors influencing the catalytic activity of the 5Ni + xSr-MgO catalysts (where x = 1, 2, 3, and 4 wt%). Ni, supported over MgO, has few active sites and lacks a strong basic site, which results in minimum catalytic activity. Adding 1–4 wt% Sr over 5Ni-MgO induces the formation of higher concentrations of active sites and an increased population of strong basic sites. At 3 wt% Sr loading, concentration of active sits, strong basic sites, and strong acid sites are optimum which can activate CH4 and CO2 timely for DRM rather than coke deposition. So, 5Ni + 3Sr-MgO achieved 58.4% CH4 conversion (with H2/CO ratio 1.1) at 700 °C and ~ 82% CH4 conversion at 750 °C. This study offers insights for turning a cheap catalyst system (5Ni-MgO) into a high-performance catalyst by optimum loading of Sr promotor.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.