Bricard Mbituyimana, Lina Fu, Hao Wang, Fuyu Qi, Yuchi Jiang, Fanbo Meng, Min Wu, Zhijun Shi, Guang Yang
{"title":"Glutamic acid-loaded separable microneedle composite for long-acting hair regeneration treatment","authors":"Bricard Mbituyimana, Lina Fu, Hao Wang, Fuyu Qi, Yuchi Jiang, Fanbo Meng, Min Wu, Zhijun Shi, Guang Yang","doi":"10.1007/s42114-025-01287-0","DOIUrl":null,"url":null,"abstract":"<div><p>Androgenetic alopecia (AGA) is the most common type of hair loss frequently observed in clinics. Right now, there are no effective treatments for AGA. Here, we developed a biodegradable microneedle (MN) patch made of polylactic-co-glycolic acid (PLGA) loaded with glutamic acid (GA) that improves sustainable drug release and effective hair regeneration treatment. Once the patch has penetrated the skin, the GA-loaded MNs (GA-MNs) are quickly separated from their base and enter the skin. These MNs then serve as drug storage tanks inside the skin, releasing the therapeutics gradually for over 4 weeks. The sustained release of GA from long-acting biodegradable needles could lead to endocytosis by dermal papilla cells (DPCs), promoting the proliferation of cells. Compared with topical minoxidil, which requires daily treatment, animal studies have shown that GA-MNs can increase hair regeneration more effectively with lower dose frequency; the number of hair follicles in the GA-MNs group reached 83.68 ± 4.52%, which was significantly higher than that of the minoxidil group (56.93 ± 3.21%). This transdermal technology of biodegradable MNs shows considerable promise in clinical applications and offers a straightforward, safe, and effective therapy approach for clinical hair regeneration treatment.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01287-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01287-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Androgenetic alopecia (AGA) is the most common type of hair loss frequently observed in clinics. Right now, there are no effective treatments for AGA. Here, we developed a biodegradable microneedle (MN) patch made of polylactic-co-glycolic acid (PLGA) loaded with glutamic acid (GA) that improves sustainable drug release and effective hair regeneration treatment. Once the patch has penetrated the skin, the GA-loaded MNs (GA-MNs) are quickly separated from their base and enter the skin. These MNs then serve as drug storage tanks inside the skin, releasing the therapeutics gradually for over 4 weeks. The sustained release of GA from long-acting biodegradable needles could lead to endocytosis by dermal papilla cells (DPCs), promoting the proliferation of cells. Compared with topical minoxidil, which requires daily treatment, animal studies have shown that GA-MNs can increase hair regeneration more effectively with lower dose frequency; the number of hair follicles in the GA-MNs group reached 83.68 ± 4.52%, which was significantly higher than that of the minoxidil group (56.93 ± 3.21%). This transdermal technology of biodegradable MNs shows considerable promise in clinical applications and offers a straightforward, safe, and effective therapy approach for clinical hair regeneration treatment.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.