Feasibility Study on the Production of Industrial PET Fibers Using Recycled Bottle-Grade PET

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2025-01-30 DOI:10.1007/s12221-025-00847-x
Hak Jun Lee, Seong Joo Kim, Ji Ho Youk, Ki Hoon Lee
{"title":"Feasibility Study on the Production of Industrial PET Fibers Using Recycled Bottle-Grade PET","authors":"Hak Jun Lee,&nbsp;Seong Joo Kim,&nbsp;Ji Ho Youk,&nbsp;Ki Hoon Lee","doi":"10.1007/s12221-025-00847-x","DOIUrl":null,"url":null,"abstract":"<div><p>PET recycling is one of the most successful examples of polymer recycling. This study explored the mechanical recycling of PET bottles to produce industrial-grade PET fibers. Recycled bottle-grade PET (rPET) underwent solid-state polymerization at 230 °C to increase molecular weight (MW), followed by melt spinning at 300 °C. The weight-average MW reduction rates for virgin PET (vPET) and rPET with the same intrinsic viscosity were nearly identical. However, rPET fibers exhibited lower tensile strength and higher shrinkage rates than vPET fibers at the same draw ratio, primarily due to the presence of IPA units in the rPET structure. Using rPET polymerized to higher MW, the tensile strength of rPET fibers comparable to vPET fibers could be produced. Under UV irradiation, vPET and rPET fibers showed similar trends in tensile strength loss and MW reduction. UV irradiation predominantly affected the amorphous regions of the PET fibers, with minimal impact on the crystalline areas. This study demonstrates the feasibility of producing industrial PET fibers from rPET through SSP and melt spinning, offering a sustainable approach for high-value applications.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 2","pages":"513 - 520"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00847-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

PET recycling is one of the most successful examples of polymer recycling. This study explored the mechanical recycling of PET bottles to produce industrial-grade PET fibers. Recycled bottle-grade PET (rPET) underwent solid-state polymerization at 230 °C to increase molecular weight (MW), followed by melt spinning at 300 °C. The weight-average MW reduction rates for virgin PET (vPET) and rPET with the same intrinsic viscosity were nearly identical. However, rPET fibers exhibited lower tensile strength and higher shrinkage rates than vPET fibers at the same draw ratio, primarily due to the presence of IPA units in the rPET structure. Using rPET polymerized to higher MW, the tensile strength of rPET fibers comparable to vPET fibers could be produced. Under UV irradiation, vPET and rPET fibers showed similar trends in tensile strength loss and MW reduction. UV irradiation predominantly affected the amorphous regions of the PET fibers, with minimal impact on the crystalline areas. This study demonstrates the feasibility of producing industrial PET fibers from rPET through SSP and melt spinning, offering a sustainable approach for high-value applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
EMpowerment of PArents in THe Intensive Care Questionnaire: Translation and Validation in Italian PICUs
IF 4.1 2区 医学Pediatric Critical Care MedicinePub Date : 2017-02-01 DOI: 10.1097/PCC.0000000000001031
A. Wolfler, A. Giannini, Martina Finistrella, I. Salvo, E. Calderini, G. Frasson, I. Dall’Oglio, Michela Di Furia, Rossella Iuzzolino, M. Musicco, J. Latour
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength Preparation of MnO2@PP MB for Organic Dyes Removal Synthesis and Characterization of Chitin/Curcumin-Based Aqueous Polyurethanes for Textile Finishes Effect of Folding in Large-Tow Polyacrylonitrile Fibers on Microstructure and Properties of Pre-oxidation Fibers The Impact of Color Dyes used in Textile Face Masks on the Physicochemical Properties of the Fabric Surface and their Influence on the Biocontamination Risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1