Bio-fabricated silver nanoparticles: therapeutic evaluation as a potential nanodrug against cervical and liver cancer cells

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2025-02-26 DOI:10.1186/s11671-025-04212-y
Irshad Ahamad, Masood Nadeem, M. Moshahid Alam Rizvi, Tasneem Fatma
{"title":"Bio-fabricated silver nanoparticles: therapeutic evaluation as a potential nanodrug against cervical and liver cancer cells","authors":"Irshad Ahamad,&nbsp;Masood Nadeem,&nbsp;M. Moshahid Alam Rizvi,&nbsp;Tasneem Fatma","doi":"10.1186/s11671-025-04212-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nanobiotechnology has grown rapidly and is now widely used in the diagnosis and treatment of modern diseases. Biosynthesized silver nanoparticles (AgNPs) are eco-friendly, cost-effective, biocompatible route, and have biomedical properties at minimal concentrations. In the present study extract of cyanobacterium (<i>Anabaena variabilis</i>) was utilized to synthesize facile, reliable AgNPs, further biosynthesized AgNPs were characterized by physicochemical techniques. The atomic force microscope study confirmed the shape of AgNPs while the scanning electron microscopy study revealed 17 to 35 nm in the size range. The zeta potential value of -19.5 mV demonstrated the repulsion effect between the particles, which prevents their aggregations while the heating stability of AgNPs was confirmed by Thermogravimetry differential thermal analysis. Another important characteristic, such as elemental constituent of AgNPs was determined by inductively coupled plasma mass spectrometry and was observed 94.24, 95.19, 97.06, and 99.34% of silver present in their respective concentrations of AgNPs. In vitro cytotoxicity of AgNPs was screened on HeLa, SiHa, (Cervical carcinoma), and HepG2 (Human hepatocellular carcinoma), cell lines. To evaluate the biocompatibility of AgNPs immortalized human embryonic kidney (HEK-293) cell line was used. The IC<sub>50</sub> values of AgNPs are were observed as 23.76 ± 2.4 µg/mL, 11.21 ± 1.7 µg/mL, and 22.27 ± 1.8 µg/mL against HeLa, SiHa and HepG2 cell lines respectively. AgNPs demonstrated the biocompatible nature against HEK-293 cells, Normal cell line (HEK-293) cytotoxicity results showed exhibited ≥ 95% cell viability at all the concentrations. During the DAPI (4’,6-diamidino-2-phenylindole) staining study IC<sub>50</sub> dose of AgNPs on cancer cell lines (HeLa, SiHa, and HepG2) showed nuclear morphological alterations which indicate the DNA damage and apoptosis in cancer cells. AgNPs treated cancer cells increased the cells number in the S phase while decreased the number of cells in the G0-G1 and G2/M phases of the cell cycle in all three cancer cells compared to the control.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04212-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04212-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanobiotechnology has grown rapidly and is now widely used in the diagnosis and treatment of modern diseases. Biosynthesized silver nanoparticles (AgNPs) are eco-friendly, cost-effective, biocompatible route, and have biomedical properties at minimal concentrations. In the present study extract of cyanobacterium (Anabaena variabilis) was utilized to synthesize facile, reliable AgNPs, further biosynthesized AgNPs were characterized by physicochemical techniques. The atomic force microscope study confirmed the shape of AgNPs while the scanning electron microscopy study revealed 17 to 35 nm in the size range. The zeta potential value of -19.5 mV demonstrated the repulsion effect between the particles, which prevents their aggregations while the heating stability of AgNPs was confirmed by Thermogravimetry differential thermal analysis. Another important characteristic, such as elemental constituent of AgNPs was determined by inductively coupled plasma mass spectrometry and was observed 94.24, 95.19, 97.06, and 99.34% of silver present in their respective concentrations of AgNPs. In vitro cytotoxicity of AgNPs was screened on HeLa, SiHa, (Cervical carcinoma), and HepG2 (Human hepatocellular carcinoma), cell lines. To evaluate the biocompatibility of AgNPs immortalized human embryonic kidney (HEK-293) cell line was used. The IC50 values of AgNPs are were observed as 23.76 ± 2.4 µg/mL, 11.21 ± 1.7 µg/mL, and 22.27 ± 1.8 µg/mL against HeLa, SiHa and HepG2 cell lines respectively. AgNPs demonstrated the biocompatible nature against HEK-293 cells, Normal cell line (HEK-293) cytotoxicity results showed exhibited ≥ 95% cell viability at all the concentrations. During the DAPI (4’,6-diamidino-2-phenylindole) staining study IC50 dose of AgNPs on cancer cell lines (HeLa, SiHa, and HepG2) showed nuclear morphological alterations which indicate the DNA damage and apoptosis in cancer cells. AgNPs treated cancer cells increased the cells number in the S phase while decreased the number of cells in the G0-G1 and G2/M phases of the cell cycle in all three cancer cells compared to the control.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物制造的银纳米粒子:作为潜在纳米药物对宫颈癌和肝癌细胞的治疗评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods Bio-fabricated silver nanoparticles: therapeutic evaluation as a potential nanodrug against cervical and liver cancer cells Retraction Note: Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors Artificial thermal flow control on thermoelectric device by tuning electrode absorptivity Advances in molecular epidemiology and detection methods of pseudorabies virus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1