Characterization of Porous In-Stream Structures to Assess Their Implications on Flow Dynamics and Sediment Transport

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2025-02-25 DOI:10.1029/2024JF007861
Hojung You, Rafael O. Tinoco
{"title":"Characterization of Porous In-Stream Structures to Assess Their Implications on Flow Dynamics and Sediment Transport","authors":"Hojung You,&nbsp;Rafael O. Tinoco","doi":"10.1029/2024JF007861","DOIUrl":null,"url":null,"abstract":"<p>In aquatic environments, the presence of porous obstacles induces intricate flow dynamics as the flow passes through and around them. These flows exhibit large local vertical and lateral gradients, influencing the evolution of downstream flow structures across various scales. In this study, we investigated flow around five idealized porous obstacles with varying porosity and pore arrangements using Particle Image Velocimetry (PIV). By introducing a two-layer model and computing turbulent kinetic energy budgets, we quantified jet velocity and length to predict the development of downstream flow structures. Recirculation zones were observed downstream of obstacles with small pore sizes, while forward flow motions prevailed downstream with larger pore sizes due to increased jet velocity and length. To study the effect of multiple porous obstacles, we installed a second obstacle at various downstream distances, which showed minimal influence on jet length and velocity once the distance between obstacles exceeded the jet length determined from single obstacle analysis, particularly with obstacles featuring large pore sizes. Our study identifies the need to properly characterize in-stream obstacles based on both their porosity and their representative pore sizes, as the jets created through the obstacles significantly alter the expected flow structures from solid-obstacle predictions. Based on the insights from the hydrodynamic study and using the balance between resistance and driving force of sediment motions, we discuss ecological and geomorphic applications in the vicinity of porous obstacles, highlighting the potential locations for sediment erosion and deposition.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007861","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007861","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In aquatic environments, the presence of porous obstacles induces intricate flow dynamics as the flow passes through and around them. These flows exhibit large local vertical and lateral gradients, influencing the evolution of downstream flow structures across various scales. In this study, we investigated flow around five idealized porous obstacles with varying porosity and pore arrangements using Particle Image Velocimetry (PIV). By introducing a two-layer model and computing turbulent kinetic energy budgets, we quantified jet velocity and length to predict the development of downstream flow structures. Recirculation zones were observed downstream of obstacles with small pore sizes, while forward flow motions prevailed downstream with larger pore sizes due to increased jet velocity and length. To study the effect of multiple porous obstacles, we installed a second obstacle at various downstream distances, which showed minimal influence on jet length and velocity once the distance between obstacles exceeded the jet length determined from single obstacle analysis, particularly with obstacles featuring large pore sizes. Our study identifies the need to properly characterize in-stream obstacles based on both their porosity and their representative pore sizes, as the jets created through the obstacles significantly alter the expected flow structures from solid-obstacle predictions. Based on the insights from the hydrodynamic study and using the balance between resistance and driving force of sediment motions, we discuss ecological and geomorphic applications in the vicinity of porous obstacles, highlighting the potential locations for sediment erosion and deposition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔内流结构的特征,以评估其对水流动力学和沉积物迁移的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Constraining Erosion Rates and Landscape Evolution With In Situ 10Be and 26Al Cosmogenic Nuclides at Table Mountain, Antarctica Issue Information Widespread Expansion of Salt Marsh Pools Observed on Maine Marshes Since 2009 Controls of Morphometric and Climatic Catchment Characteristics on Debris Flow and Flood Hazard on Alluvial Fans in High Mountain Asia: A Machine Learning Approach Characterization of Porous In-Stream Structures to Assess Their Implications on Flow Dynamics and Sediment Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1