The Impacts of Loading From Acid Sulfate Soils on Boreal Estuarine Sediments

IF 4 2区 农林科学 Q2 SOIL SCIENCE European Journal of Soil Science Pub Date : 2025-02-25 DOI:10.1111/ejss.70075
Krister Dalhem, Karoliina Kehusmaa, Joonas J. Virtasalo, Mats Åström, Peter Österholm
{"title":"The Impacts of Loading From Acid Sulfate Soils on Boreal Estuarine Sediments","authors":"Krister Dalhem,&nbsp;Karoliina Kehusmaa,&nbsp;Joonas J. Virtasalo,&nbsp;Mats Åström,&nbsp;Peter Österholm","doi":"10.1111/ejss.70075","DOIUrl":null,"url":null,"abstract":"<p>Estuaries play a vital role in the coastal environment by filtering pollutants and nutrients from catchment runoff. In areas where acid sulfate (AS) soils are abundant, the importance of the estuary as a coastal filter is heightened as AS soils typically stress the marine environment with acidic metal-laden drainage waters. In this study, we took sediment cores from a shallow estuary in Western Finland and used geochemical and palaeoecological methods to investigate how the estuary is affected by loading from AS soils. An overall decrease in diatom species richness and diversity in the estuarine sediments was found, with a clear change from species preferring pelagic conditions to species indicative of more eutrophic conditions. The change coincides with human disturbance during the early 20th century when extensive drainage and rework of forests and peatlands into agricultural use increased. Geochemical analyses show a significant enrichment of Cd, Ni, Co, Zn and Al in the estuarine sediments which correspond to the metal loads originating from the catchment AS soils. Our calculations, however, show that in comparison to the total load of soluble metals from the catchment area, more than 80% of chalcophiles and 70% of Al are transported further out to sea. We hypothesised that a precipitation gradient driven by changes in pH and salinity due to seawater mixing would form along a transect towards the estuary outlet. Instead, we found that physical sedimentation processes are stronger drivers for element transport, as enrichment takes place only in low-energy hydrodynamic conditions at greater water depths. Glacioisostatic land uplift and significant particle transport from the catchment area are further isolating the estuary, effectively moving the saline gradient seawards and diminishing the role of the estuary as a coastal filter. We also found that the estuarine sediments are hypersulfidic and contain stores of potential acidity significantly larger than conventional AS soils. Without proper management, disturbance of the estuarine sediments can cause disastrous consequences at a local level.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70075","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Estuaries play a vital role in the coastal environment by filtering pollutants and nutrients from catchment runoff. In areas where acid sulfate (AS) soils are abundant, the importance of the estuary as a coastal filter is heightened as AS soils typically stress the marine environment with acidic metal-laden drainage waters. In this study, we took sediment cores from a shallow estuary in Western Finland and used geochemical and palaeoecological methods to investigate how the estuary is affected by loading from AS soils. An overall decrease in diatom species richness and diversity in the estuarine sediments was found, with a clear change from species preferring pelagic conditions to species indicative of more eutrophic conditions. The change coincides with human disturbance during the early 20th century when extensive drainage and rework of forests and peatlands into agricultural use increased. Geochemical analyses show a significant enrichment of Cd, Ni, Co, Zn and Al in the estuarine sediments which correspond to the metal loads originating from the catchment AS soils. Our calculations, however, show that in comparison to the total load of soluble metals from the catchment area, more than 80% of chalcophiles and 70% of Al are transported further out to sea. We hypothesised that a precipitation gradient driven by changes in pH and salinity due to seawater mixing would form along a transect towards the estuary outlet. Instead, we found that physical sedimentation processes are stronger drivers for element transport, as enrichment takes place only in low-energy hydrodynamic conditions at greater water depths. Glacioisostatic land uplift and significant particle transport from the catchment area are further isolating the estuary, effectively moving the saline gradient seawards and diminishing the role of the estuary as a coastal filter. We also found that the estuarine sediments are hypersulfidic and contain stores of potential acidity significantly larger than conventional AS soils. Without proper management, disturbance of the estuarine sediments can cause disastrous consequences at a local level.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
期刊最新文献
Editorial for the EJP SOIL Special Issue 1 on “Climate-Smart Sustainable Agricultural Soil Management for the Future” Quantitative Microbiome Profiling Facilitates Convenient Detection of Root-Associated Fungi in an Alpine Meadow Correction to “BLOSOM: A Plant Growth Facility Optimised for Continuous 13C Labelling and Measurement of Soil Organic Matter Dynamics” Correction to “Optimized fertilization Mitigated Carbon and Nitrogen Losses in a Solonchak” The Impacts of Loading From Acid Sulfate Soils on Boreal Estuarine Sediments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1