3D Printed Bioactive Mechanical-Adaptive Polyetheretherketone Implants with Non-Invasive Tracking for Immunomodulatory Osseointegration.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-02-25 DOI:10.1002/adhm.202404435
Hongyun Ma, Jin Tong, Xiaochen Su, Liang Liu, Jingqi Liang, Jianbo Sun, Jun Lu, Yingang Zhang, Bo Lei, Hongmou Zhao
{"title":"3D Printed Bioactive Mechanical-Adaptive Polyetheretherketone Implants with Non-Invasive Tracking for Immunomodulatory Osseointegration.","authors":"Hongyun Ma, Jin Tong, Xiaochen Su, Liang Liu, Jingqi Liang, Jianbo Sun, Jun Lu, Yingang Zhang, Bo Lei, Hongmou Zhao","doi":"10.1002/adhm.202404435","DOIUrl":null,"url":null,"abstract":"<p><p>Polyether-ether-ketone (PEEK) has become a much-attracted biomedical implant material in orthopedic surgery, serving as a more biocompatible alternative to conventional metals. However, the inherent bioinert and mismatched mechanical surface of PEEK have limited their optimized bone fixation and repair. In this work, a PEEK implant is printed and a bioactive mechanical-adaptive surface via in situ chemical linking of photoluminescent elastomeric poly(citrate-silicon) (PCS) polymer (PEEK-PCS) is subsequently constructed, which could be used for real-time bioimaging and enhanced osseointegration. The PEEK-PCS surface exhibits viscoelastic properties, enabling it to conform to complex tissue geometries and effectively alleviate surface stress. Furthermore, PEEK-PCS modulates the inflammatory response by promoting macrophage M2 phenotypic polarization and reducing the expression of inflammatory factors. Additionally, PEEK-PCS promotes the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), significantly enhancing the osseointegration and osteogenesis ability of PEEK implants. Notably, PEEK-PCS demonstrates excellent autofluorescence properties both in vitro and in vivo, along with remarkable fluorescence stability over 14 d in vivo, suggesting real-time tracking potential of bioimaging. Compared to traditional coated implants, PEEK-PCS provides distinct advantages in surface adhesion, mechanical compatibility, real-time bioimaging, and osseointegration, representing a promising solution for implant-related bone repair.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404435"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyether-ether-ketone (PEEK) has become a much-attracted biomedical implant material in orthopedic surgery, serving as a more biocompatible alternative to conventional metals. However, the inherent bioinert and mismatched mechanical surface of PEEK have limited their optimized bone fixation and repair. In this work, a PEEK implant is printed and a bioactive mechanical-adaptive surface via in situ chemical linking of photoluminescent elastomeric poly(citrate-silicon) (PCS) polymer (PEEK-PCS) is subsequently constructed, which could be used for real-time bioimaging and enhanced osseointegration. The PEEK-PCS surface exhibits viscoelastic properties, enabling it to conform to complex tissue geometries and effectively alleviate surface stress. Furthermore, PEEK-PCS modulates the inflammatory response by promoting macrophage M2 phenotypic polarization and reducing the expression of inflammatory factors. Additionally, PEEK-PCS promotes the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), significantly enhancing the osseointegration and osteogenesis ability of PEEK implants. Notably, PEEK-PCS demonstrates excellent autofluorescence properties both in vitro and in vivo, along with remarkable fluorescence stability over 14 d in vivo, suggesting real-time tracking potential of bioimaging. Compared to traditional coated implants, PEEK-PCS provides distinct advantages in surface adhesion, mechanical compatibility, real-time bioimaging, and osseointegration, representing a promising solution for implant-related bone repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
3D Printed Bioactive Mechanical-Adaptive Polyetheretherketone Implants with Non-Invasive Tracking for Immunomodulatory Osseointegration. Bimetallic MnZnSX Nanotheranostics for Self-Activatable Chemo-Immunotherapy of Hepatocellular Carcinoma via H₂S-Triggered Arsenic Prodrug Activation and Binary cGAS-STING Pathway Modulation. Clusterzyme-Enabled Oxidative Stress Alleviation and Microglial Polarization Modulation for Efficient Ischemic Stroke Treatment. Hollow-Structured Nanorobot with Excellent Magnetic Propulsion for Catalytic Pollutant Degradation, Anti-Bacterial and Biofilm Removal. Inducing Cuproptosis with Copper Ion-Loaded Aloe Emodin Self-Assembled Nanoparticles for Enhanced Tumor Photodynamic Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1