Kyunghoon Lee, Jinwon Lee, Shinyoung Park, Woo Youn Kim
{"title":"Facilitating Transition State Search with Minimal Conformational Sampling Using Reaction Graph.","authors":"Kyunghoon Lee, Jinwon Lee, Shinyoung Park, Woo Youn Kim","doi":"10.1021/acs.jctc.4c01692","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating transition states (TSs) is crucial for understanding chemical reactions. The reliability of traditional TS search approaches depends on input conformations that require significant effort to prepare. Previous automated methods for generating input reaction conformations typically involve extensive exploration of a large conformational space. Such exhaustive search can be complicated by the rapid growth of the conformational space, especially for reactions involving many rotatable bonds, multiple reacting molecules, and numerous bond formations and dissociations. To address this problem, we propose a new approach that generates reaction conformations for TS searches with minimal reliance on sampling. This method constructs a pseudo-TS structure based on a reaction graph containing bond formation and dissociation information and modifies it to produce reactant and product conformations. Tested on three different benchmarks, our method consistently generated suitable conformations without necessitating extensive sampling, demonstrating its potential to significantly improve the applicability of automated TS searches. This approach offers a valuable tool for a broad range of applications such as reaction mechanism analysis and network exploration.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating transition states (TSs) is crucial for understanding chemical reactions. The reliability of traditional TS search approaches depends on input conformations that require significant effort to prepare. Previous automated methods for generating input reaction conformations typically involve extensive exploration of a large conformational space. Such exhaustive search can be complicated by the rapid growth of the conformational space, especially for reactions involving many rotatable bonds, multiple reacting molecules, and numerous bond formations and dissociations. To address this problem, we propose a new approach that generates reaction conformations for TS searches with minimal reliance on sampling. This method constructs a pseudo-TS structure based on a reaction graph containing bond formation and dissociation information and modifies it to produce reactant and product conformations. Tested on three different benchmarks, our method consistently generated suitable conformations without necessitating extensive sampling, demonstrating its potential to significantly improve the applicability of automated TS searches. This approach offers a valuable tool for a broad range of applications such as reaction mechanism analysis and network exploration.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.