Nicolaï Gouraud, Louis Lagardère, Olivier Adjoua, Thomas Plé, Pierre Monmarché, Jean-Philip Piquemal
{"title":"Velocity Jumps for Molecular Dynamics.","authors":"Nicolaï Gouraud, Louis Lagardère, Olivier Adjoua, Thomas Plé, Pierre Monmarché, Jean-Philip Piquemal","doi":"10.1021/acs.jctc.5c00023","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the Velocity Jumps approach, denoted as JUMP, a new class of Molecular dynamics integrators, replacing the Langevin dynamics by a hybrid model combining a classical Langevin diffusion and a piecewise deterministic Markov process, where the expensive computation of long-range pairwise interactions is replaced by a resampling of the velocities at random times. This framework allows for an acceleration in the simulation speed while preserving sampling and dynamical properties such as the diffusion constant. It can also be integrated in classical multi-time-step methods, pushing further the computational speedup, while avoiding some of the resonance issues of the latter thanks to the random nature of jumps. The JUMP, JUMP-RESPA and JUMP-RESPA1 integrators have been implemented in the GPU-accelerated version of the Tinker-HP package and are shown to provide significantly enhanced performances compared to their BAOAB, BAOAB-RESPA and BAOAB-RESPA1 counterparts, respectively.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the Velocity Jumps approach, denoted as JUMP, a new class of Molecular dynamics integrators, replacing the Langevin dynamics by a hybrid model combining a classical Langevin diffusion and a piecewise deterministic Markov process, where the expensive computation of long-range pairwise interactions is replaced by a resampling of the velocities at random times. This framework allows for an acceleration in the simulation speed while preserving sampling and dynamical properties such as the diffusion constant. It can also be integrated in classical multi-time-step methods, pushing further the computational speedup, while avoiding some of the resonance issues of the latter thanks to the random nature of jumps. The JUMP, JUMP-RESPA and JUMP-RESPA1 integrators have been implemented in the GPU-accelerated version of the Tinker-HP package and are shown to provide significantly enhanced performances compared to their BAOAB, BAOAB-RESPA and BAOAB-RESPA1 counterparts, respectively.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.