Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane.

IF 2.2 4区 化学 Q2 CHEMISTRY, ORGANIC Beilstein Journal of Organic Chemistry Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.3762/bjoc.21.29
Zahra Noori, Miquel Solà, Clara Viñas, Francesc Teixidor, Jordi Poater
{"title":"Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane.","authors":"Zahra Noori, Miquel Solà, Clara Viñas, Francesc Teixidor, Jordi Poater","doi":"10.3762/bjoc.21.29","DOIUrl":null,"url":null,"abstract":"<p><p>A new series of <i>o</i>-carborane-fused pyrazoles has been recently successfully synthesized. This fusion was expected to create a hybrid 3D/2D aromatic system, combining the 3D aromaticity of <i>o</i>-carborane with the 2D aromaticity of pyrazole. However, while the boron cage retains its aromatic character, the pyrazole's aromaticity is lost. As a result, rather than forming <i>o</i>-carborane-fused pyrazoles, the synthesis yielded <i>o</i>-carborane-fused pyrazolines, which are non-aromatic. The limited overlap between the π molecular orbitals (MOs) of the planar heterocycle and the <i>n</i> + 1 MOs of the carborane prevents significant electronic delocalization between the two fused components. This contrasts with the fusion of pyrazole and benzene to form indazole, where both rings maintain their 2D aromaticity. Our findings demonstrate that the peripheral σ-aromaticity of carborane and the π-aromaticity of the heterocycle are orthogonal, making a true 3D/2D aromatic system unachievable. The carborane is highly aromatic, generating highly negative NICS values (-25 to -30 ppm). We have observed that these high NICS values extend to fused rings, leading to incorrect estimations of aromaticity. Therefore, relying solely on NICS can be misleading, and other computational indicators, along with experimental or structural data, should be used to accurately assess aromaticity.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"412-420"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.29","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

A new series of o-carborane-fused pyrazoles has been recently successfully synthesized. This fusion was expected to create a hybrid 3D/2D aromatic system, combining the 3D aromaticity of o-carborane with the 2D aromaticity of pyrazole. However, while the boron cage retains its aromatic character, the pyrazole's aromaticity is lost. As a result, rather than forming o-carborane-fused pyrazoles, the synthesis yielded o-carborane-fused pyrazolines, which are non-aromatic. The limited overlap between the π molecular orbitals (MOs) of the planar heterocycle and the n + 1 MOs of the carborane prevents significant electronic delocalization between the two fused components. This contrasts with the fusion of pyrazole and benzene to form indazole, where both rings maintain their 2D aromaticity. Our findings demonstrate that the peripheral σ-aromaticity of carborane and the π-aromaticity of the heterocycle are orthogonal, making a true 3D/2D aromatic system unachievable. The carborane is highly aromatic, generating highly negative NICS values (-25 to -30 ppm). We have observed that these high NICS values extend to fused rings, leading to incorrect estimations of aromaticity. Therefore, relying solely on NICS can be misleading, and other computational indicators, along with experimental or structural data, should be used to accurately assess aromaticity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
期刊最新文献
Photomechanochemistry: harnessing mechanical forces to enhance photochemical reactions. Electrochemical synthesis of cyclic biaryl λ3-bromanes from 2,2'-dibromobiphenyls. New tandem Ugi/intramolecular Diels-Alder reaction based on vinylfuran and 1,3-butadienylfuran derivatives. Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages. Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1