Carbon dioxide infusion reduces invasive mussel biofouling (quagga mussel; Dreissena rostriformis bugensis) in raw water systems.

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2025-03-01 Epub Date: 2025-02-25 DOI:10.1080/08927014.2025.2468282
Matthew T Barbour, Todd J Severson, Jeremy K Wise, Matthew J Muelemans, Kevin Kelly, Sherri Pucherelli, Diane L Waller
{"title":"Carbon dioxide infusion reduces invasive mussel biofouling (quagga mussel; <i>Dreissena rostriformis bugensis</i>) in raw water systems.","authors":"Matthew T Barbour, Todd J Severson, Jeremy K Wise, Matthew J Muelemans, Kevin Kelly, Sherri Pucherelli, Diane L Waller","doi":"10.1080/08927014.2025.2468282","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of carbon dioxide (CO<sub>2</sub>) to reduce biofouling by quagga mussels (<i>Dreissena rostriformis bugensis</i>) in raw water systems was investigated. Experiments were conducted in a mobile laboratory located at Bureau of Reclamation Davis Dam Hydropower Facility and supplied with raw water from Lake Mohave, a reservoir of the Colorado River, USA. Incoming water was split between five chambers, each infused with CO<sub>2</sub> at a different rate. Raw reservoir water containing quagga larvae (veligers) was mixed with CO<sub>2</sub> chamber outflows and delivered to tanks containing settlement plates. Two experiments were conducted. Experiment 1 tested continuous infusion at target concentrations of 30, 45, 60, 75, and 100 mg L<sup>-1</sup> dCO<sub>2</sub> (dissolved CO<sub>2</sub>). Experiment 2 evaluated intermittent infusion schedules: 24 h on/off with 50, 75, and 100 mg L<sup>-1</sup> dCO<sub>2</sub> and 24 h once/week with 100 mg L<sup>-1</sup> dCO<sub>2</sub>. In Experiment 1, the percent settlement decreased with mean CO<sub>2</sub> concentration, ranging from 5.0% to < 0.1% in 28.7 and 92.2 mg L<sup>-1</sup> dCO<sub>2</sub>, respectively. In Experiment 2, the efficacy of 24 h on/off at dCO<sub>2</sub> > 72.2 mg L<sup>-1</sup> was similar to continuous treatment. The least effective treatment was 24 h once weekly at 95 mg L<sup>-1</sup> dCO<sub>2</sub>. These results demonstrate that CO<sub>2</sub> treatment may reduce mussel biofouling in raw water systems.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"253-264"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2468282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of carbon dioxide (CO2) to reduce biofouling by quagga mussels (Dreissena rostriformis bugensis) in raw water systems was investigated. Experiments were conducted in a mobile laboratory located at Bureau of Reclamation Davis Dam Hydropower Facility and supplied with raw water from Lake Mohave, a reservoir of the Colorado River, USA. Incoming water was split between five chambers, each infused with CO2 at a different rate. Raw reservoir water containing quagga larvae (veligers) was mixed with CO2 chamber outflows and delivered to tanks containing settlement plates. Two experiments were conducted. Experiment 1 tested continuous infusion at target concentrations of 30, 45, 60, 75, and 100 mg L-1 dCO2 (dissolved CO2). Experiment 2 evaluated intermittent infusion schedules: 24 h on/off with 50, 75, and 100 mg L-1 dCO2 and 24 h once/week with 100 mg L-1 dCO2. In Experiment 1, the percent settlement decreased with mean CO2 concentration, ranging from 5.0% to < 0.1% in 28.7 and 92.2 mg L-1 dCO2, respectively. In Experiment 2, the efficacy of 24 h on/off at dCO2 > 72.2 mg L-1 was similar to continuous treatment. The least effective treatment was 24 h once weekly at 95 mg L-1 dCO2. These results demonstrate that CO2 treatment may reduce mussel biofouling in raw water systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳输注减少侵入性贻贝生物污染(斑驴贻贝;原水系统中的刺状螺旋体。
研究了二氧化碳(CO2)对原水系统中斑马贝(Dreissena rostriformis bugensis)生物污染的影响。实验在位于美国垦务局戴维斯大坝水力发电设施的移动实验室进行,原水来自美国科罗拉多河的莫哈韦湖水库。进入的水被分成五个室,每个室以不同的速率注入二氧化碳。含有斑驴幼虫(斑驴幼虫)的原始水库水与CO2室流出物混合,并输送到装有沉降板的水箱中。进行了两个实验。实验1连续输注目标浓度为30、45、60、75和100 mg L-1 dCO2(溶解的CO2)。实验2评估间歇输注方案:50,75和100mg L-1 dCO2开/关24h, 100mg L-1 dCO2每周1次24h。实验1在28.7 mg L-1 dCO2和92.2 mg L-1 dCO2浓度下,沉降率随CO2浓度的增加而降低,分别为5.0% ~ < 0.1%。在实验2中,在dCO2浓度为72.2 mg L-1的条件下,24 h开/关的效果与连续处理相似。效果最差的处理是每周1次,每次24 h,浓度为95 mg L-1 dCO2。这些结果表明,CO2处理可以减少原水系统中贻贝的生物结垢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
The bio-corrosion mechanisms, mathematical modelling and machine learning applications in concrete structures: a systematic review. Embryonic exposure to irgarol impacts development and larval and juvenile swimming in zebrafish (Danio rerio). Antifouling compounds from marine fungus Aspergillus iizukae GXIMD 00548. Automated underwater imaging system for continuous biofouling assessment. Enhancing the efficacy and selectivity of novel antimicrobial peptides against methicillin-resistant Staphylococcus aureus through computational and experimental approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1