Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-02-24 DOI:10.1186/s12911-025-02878-z
Yuan Li, Shuang Song, Liying Zhu, Xiaorun Zhang, Yijiao Mou, Maoxing Lei, Wenjing Wang, Zhen Tao
{"title":"Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia.","authors":"Yuan Li, Shuang Song, Liying Zhu, Xiaorun Zhang, Yijiao Mou, Maoxing Lei, Wenjing Wang, Zhen Tao","doi":"10.1186/s12911-025-02878-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Staphylococcus aureus bacteremia (SAB) remains a significant contributor to both community-acquired and healthcare-associated bloodstream infections. SAB exhibits a high recurrence rate and mortality rate, leading to numerous clinical treatment challenges. Particularly, since the outbreak of COVID-19, there has been a gradual increase in SAB patients, with a growing proportion of (Methicillin-resistant Staphylococcus aureus) MRSA infections. Therefore, we have constructed and validated a pediction model for recurrent SAB using machine learning. This model aids physicians in promptly assessing the condition and intervening proactively.</p><p><strong>Methods: </strong>The patients data is sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database version 2.2. The patients were divided into training and testing datasets using a 7:3 random sampling ratio. The process of feature selection employed two methods: Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO). Prediction models were built using Extreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Model validation included Receiver Operating Characteristic (ROC) analysis, Decision Curve Analysis (DCA), and Precision-Recall Curve (PRC). We utilized SHAP (SHapley Additive exPlanations) values to demonstrate the significance of each feature and explain the XGBoost model.</p><p><strong>Results: </strong>After screening, MRSA, PTT, RBC, RDW, Neutrophils_abs, Sodium, Calcium, Vancomycin concentration, MCHC, MCV, and Prognostic Nutritional Index(PNI) were selected as features for constructing the model. Through combined evaluation using ROC、 DCA and PRC, XGBoost demonstrated the best predictive performance, achieving an AUC value of 0.76 (95% CI: 0.66-0.85) in ROC and 0.56 (95% CI: 0.37-0.75) in PRC. Building a website based on the Xgboost model. SHAP illustrated the feature importance ranking in the XGBoost model and provided examples to explain the XGBoost model.</p><p><strong>Conclusions: </strong>The adoption of XGBoost for model development holds widespread acceptance in the medical domain. The prediction model for recurrent SAB, developed by our team, aids physicians in timely diagnosis and treatment of patients.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"99"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02878-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Staphylococcus aureus bacteremia (SAB) remains a significant contributor to both community-acquired and healthcare-associated bloodstream infections. SAB exhibits a high recurrence rate and mortality rate, leading to numerous clinical treatment challenges. Particularly, since the outbreak of COVID-19, there has been a gradual increase in SAB patients, with a growing proportion of (Methicillin-resistant Staphylococcus aureus) MRSA infections. Therefore, we have constructed and validated a pediction model for recurrent SAB using machine learning. This model aids physicians in promptly assessing the condition and intervening proactively.

Methods: The patients data is sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database version 2.2. The patients were divided into training and testing datasets using a 7:3 random sampling ratio. The process of feature selection employed two methods: Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO). Prediction models were built using Extreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Model validation included Receiver Operating Characteristic (ROC) analysis, Decision Curve Analysis (DCA), and Precision-Recall Curve (PRC). We utilized SHAP (SHapley Additive exPlanations) values to demonstrate the significance of each feature and explain the XGBoost model.

Results: After screening, MRSA, PTT, RBC, RDW, Neutrophils_abs, Sodium, Calcium, Vancomycin concentration, MCHC, MCV, and Prognostic Nutritional Index(PNI) were selected as features for constructing the model. Through combined evaluation using ROC、 DCA and PRC, XGBoost demonstrated the best predictive performance, achieving an AUC value of 0.76 (95% CI: 0.66-0.85) in ROC and 0.56 (95% CI: 0.37-0.75) in PRC. Building a website based on the Xgboost model. SHAP illustrated the feature importance ranking in the XGBoost model and provided examples to explain the XGBoost model.

Conclusions: The adoption of XGBoost for model development holds widespread acceptance in the medical domain. The prediction model for recurrent SAB, developed by our team, aids physicians in timely diagnosis and treatment of patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Detection of COPD exacerbations with continuous monitoring of breathing rate and inspiratory amplitude under oxygen therapy. Correction: FHIR PIT: a geospatial and spatiotemporal data integration pipeline to support subject-level clinical research. Correction: Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022. Evolution of clinical Health Information Exchanges to population health resources: a case study of the Indiana network for patient care. Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1