Lisiane Pruinelli, Kiruthika Balakrishnan, Sisi Ma, Zhigang Li, Anji Wall, Jennifer C Lai, Jesse D Schold, Timothy Pruett, Gyorgy Simon
{"title":"Transforming liver transplant allocation with artificial intelligence and machine learning: a systematic review.","authors":"Lisiane Pruinelli, Kiruthika Balakrishnan, Sisi Ma, Zhigang Li, Anji Wall, Jennifer C Lai, Jesse D Schold, Timothy Pruett, Gyorgy Simon","doi":"10.1186/s12911-025-02890-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The principles of urgency, utility, and benefit are fundamental concepts guiding the ethical and practical decision-making process for organ allocation; however, LT allocation still follows an urgency model.</p><p><strong>Aim: </strong>To identify and analyze data elements used in Machine Learning (ML) and Artificial Intelligence (AI) methods, data sources, and their focus on urgency, utility, or benefit in LT.</p><p><strong>Methods: </strong>A comprehensive search across Ovid Medline and Scopus was conducted for studies published from 2002 to June 2023. Inclusion criteria targeted quantitative studies using ML/AI for candidates, donors, or recipients. Two reviewers assessed eligibility and extracted data, following PRISMA guidelines.</p><p><strong>Results: </strong>A total of 20 papers were included, synthesizing results into five major categories. Eight studies were led by a Spanish team, focusing on donor-recipient matching and proposing machine learning models to predict post- LT survival. Other international studies addressed organ supply-demand issues and developed predictive models to optimize LT outcomes. The studies highlight the potential of ML/AI to enhance LT allocation and outcomes. Despite advancements, limitations included the lack of robust transplant-related benefit models and improvements in urgency models compared to MELD.</p><p><strong>Discussion: </strong>This review highlighted the potential of AI and ML to enhance liver transplant allocation and outcomes. Significant advancements were noted, but limitations such as the need for better urgency models and the absence of a transplant-related benefit model remain. Most studies emphasized utility, focusing on survival outcomes. Future research should address the interpretability and generalizability of these models to improve organ allocation and post-LT survival predictions.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"98"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02890-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The principles of urgency, utility, and benefit are fundamental concepts guiding the ethical and practical decision-making process for organ allocation; however, LT allocation still follows an urgency model.
Aim: To identify and analyze data elements used in Machine Learning (ML) and Artificial Intelligence (AI) methods, data sources, and their focus on urgency, utility, or benefit in LT.
Methods: A comprehensive search across Ovid Medline and Scopus was conducted for studies published from 2002 to June 2023. Inclusion criteria targeted quantitative studies using ML/AI for candidates, donors, or recipients. Two reviewers assessed eligibility and extracted data, following PRISMA guidelines.
Results: A total of 20 papers were included, synthesizing results into five major categories. Eight studies were led by a Spanish team, focusing on donor-recipient matching and proposing machine learning models to predict post- LT survival. Other international studies addressed organ supply-demand issues and developed predictive models to optimize LT outcomes. The studies highlight the potential of ML/AI to enhance LT allocation and outcomes. Despite advancements, limitations included the lack of robust transplant-related benefit models and improvements in urgency models compared to MELD.
Discussion: This review highlighted the potential of AI and ML to enhance liver transplant allocation and outcomes. Significant advancements were noted, but limitations such as the need for better urgency models and the absence of a transplant-related benefit model remain. Most studies emphasized utility, focusing on survival outcomes. Future research should address the interpretability and generalizability of these models to improve organ allocation and post-LT survival predictions.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.