{"title":"Evaluation of novel fungicides (FRAC groups 7, 9, 12) for managing cranberry fruit rot.","authors":"Leela Saisree Uppala, Salisu Sulley","doi":"10.3389/fpls.2024.1508744","DOIUrl":null,"url":null,"abstract":"<p><p>Cranberry fruit rot (CFR) is a major disease complex that significantly impacts cranberry crops, leading to substantial yield losses. Over the past decade, CFR has become increasingly problematic, particularly in high-yielding and newer cultivars, with reported losses ranging from 50% to 100%. Additionally, the cranberry industry faces increasing restrictions on the use of broad-spectrum fungicides, such as chlorothalonil and mancozeb, necessitating the exploration of alternative management strategies. This study, conducted from 2021 to 2024 at the University of Massachusetts-Amherst Cranberry Station, evaluated novel fungicides from FRAC Groups 7, 9, and 12. The active ingredients-benzovindiflupyr, pydiflumetofen, cyprodinil, and fludioxonil-were tested individually and in combination with azoxystrobin (FRAC 11). The efficacy of these fungicides in reducing CFR incidence and improving yield was assessed on cranberry cultivars 'Demoranville', 'Ben Lear,' and 'Stevens' with applications made at early, mid, and late bloom stages. Significant differences in fruit rot incidence and yield were observed in 2021, 2023 and 2024. Treatments containing pydiflumetofen, pydiflumetofen & fludioxonil, and benzovindiflupyr, when applied in combination with azoxystrobin, consistently resulted in lower rot incidence and higher yields. The treatment containing cyprodinil & fludioxonil plus azoxystrobin, tested only in 2021, also resulted in lower rot incidence and higher yield. These findings highlight the potential of novel fungicides from FRAC Groups 7, 9, and 12 as effective alternatives for CFR management. Their use could diversify the CFR management toolkit, mitigate fungicide resistance, and reduce environmental impacts, addressing the challenges posed by increasing fungicide regulations.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1508744"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1508744","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cranberry fruit rot (CFR) is a major disease complex that significantly impacts cranberry crops, leading to substantial yield losses. Over the past decade, CFR has become increasingly problematic, particularly in high-yielding and newer cultivars, with reported losses ranging from 50% to 100%. Additionally, the cranberry industry faces increasing restrictions on the use of broad-spectrum fungicides, such as chlorothalonil and mancozeb, necessitating the exploration of alternative management strategies. This study, conducted from 2021 to 2024 at the University of Massachusetts-Amherst Cranberry Station, evaluated novel fungicides from FRAC Groups 7, 9, and 12. The active ingredients-benzovindiflupyr, pydiflumetofen, cyprodinil, and fludioxonil-were tested individually and in combination with azoxystrobin (FRAC 11). The efficacy of these fungicides in reducing CFR incidence and improving yield was assessed on cranberry cultivars 'Demoranville', 'Ben Lear,' and 'Stevens' with applications made at early, mid, and late bloom stages. Significant differences in fruit rot incidence and yield were observed in 2021, 2023 and 2024. Treatments containing pydiflumetofen, pydiflumetofen & fludioxonil, and benzovindiflupyr, when applied in combination with azoxystrobin, consistently resulted in lower rot incidence and higher yields. The treatment containing cyprodinil & fludioxonil plus azoxystrobin, tested only in 2021, also resulted in lower rot incidence and higher yield. These findings highlight the potential of novel fungicides from FRAC Groups 7, 9, and 12 as effective alternatives for CFR management. Their use could diversify the CFR management toolkit, mitigate fungicide resistance, and reduce environmental impacts, addressing the challenges posed by increasing fungicide regulations.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.