Effects of electric fields on the modulation of chondrocytes dynamics in gelatin scaffolds: a novel approach to optimize cartilage tissue engineering.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2025-02-25 DOI:10.1080/09205063.2025.2466971
Juan José Saiz Culma, Johana María Guevara Morales, Yoshie Adriana Hata Uribe, Diego Alexander Garzón-Alvarado, Sara Leal-Marin, Birgit Glasmacher, Juan Jairo Vaca-González
{"title":"Effects of electric fields on the modulation of chondrocytes dynamics in gelatin scaffolds: a novel approach to optimize cartilage tissue engineering.","authors":"Juan José Saiz Culma, Johana María Guevara Morales, Yoshie Adriana Hata Uribe, Diego Alexander Garzón-Alvarado, Sara Leal-Marin, Birgit Glasmacher, Juan Jairo Vaca-González","doi":"10.1080/09205063.2025.2466971","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of degenerative pathologies affecting articular cartilage remains a significant clinical challenge. Non-invasive biophysical stimuli, such as electric fields, have demonstrated potential as therapeutic tools for cartilage tissue restoration. Previous studies have reported that electric fields enhance chondrocyte proliferation and the synthesis of key extracellular matrix components, such as glycosaminoglycans. However, inconsistencies in experimental designs have led to variable findings. This study examines the effects of capacitively coupled electric fields on chondrocytes cultured in gelatin hydrogels. Alternating voltages of 50 V (7.7 mV/cm) and 100 V (8.7 mV/cm) at a frequency of 60 kHz were applied for 21 days. Cell quantification and glycosaminoglycan analysis were performed on both stimulated and control samples. On day 7, exposure to the electric field resulted in a significant reduction in cell proliferation by 24.7% and 39.2% at 7.7 mV/cm and 8.7 mV/cm, respectively (<i>p</i> < 0.05). However, stimulation at 8.7 mV/cm led to a 35.7% increase in glycosaminoglycan synthesis compared to the control group (<i>p</i> < 0.05). These findings indicate that electric field stimulation can modulate the synthesis of essential extracellular matrix components, such as glycosaminoglycans, in hyaline cartilage. This highlights the potential of electric fields as a promising strategy to enhance outcomes in articular cartilage tissue engineering, particularly in hydrogel-based therapeutic approaches.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2466971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The treatment of degenerative pathologies affecting articular cartilage remains a significant clinical challenge. Non-invasive biophysical stimuli, such as electric fields, have demonstrated potential as therapeutic tools for cartilage tissue restoration. Previous studies have reported that electric fields enhance chondrocyte proliferation and the synthesis of key extracellular matrix components, such as glycosaminoglycans. However, inconsistencies in experimental designs have led to variable findings. This study examines the effects of capacitively coupled electric fields on chondrocytes cultured in gelatin hydrogels. Alternating voltages of 50 V (7.7 mV/cm) and 100 V (8.7 mV/cm) at a frequency of 60 kHz were applied for 21 days. Cell quantification and glycosaminoglycan analysis were performed on both stimulated and control samples. On day 7, exposure to the electric field resulted in a significant reduction in cell proliferation by 24.7% and 39.2% at 7.7 mV/cm and 8.7 mV/cm, respectively (p < 0.05). However, stimulation at 8.7 mV/cm led to a 35.7% increase in glycosaminoglycan synthesis compared to the control group (p < 0.05). These findings indicate that electric field stimulation can modulate the synthesis of essential extracellular matrix components, such as glycosaminoglycans, in hyaline cartilage. This highlights the potential of electric fields as a promising strategy to enhance outcomes in articular cartilage tissue engineering, particularly in hydrogel-based therapeutic approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries. An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel. ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability. In vivo delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1