Alberto Prado, Susana Pineda-Solis, Roberto Garibay-Orijel, Donald Windsor, Jean-Luc Boevé
{"title":"Fungal alkaloids mediate defense against bruchid beetles in field populations of an arborescent ipomoea.","authors":"Alberto Prado, Susana Pineda-Solis, Roberto Garibay-Orijel, Donald Windsor, Jean-Luc Boevé","doi":"10.1007/s10886-025-01578-2","DOIUrl":null,"url":null,"abstract":"<p><p>Several Convolvulaceae species harbor heritable fungal endophytes from which alkaloids are translocated to reproductive tissues of the plant host. Evidence for the distribution and ecological role of these fungal alkaloids, however, is lacking or incomplete for many host species and growth forms. Here we report on the identity of the fungal endophytes and quantities of alkaloids present in the leaves and seeds of the arborescent morning glory, Ipomoea murucoides (Convolvulaceae). Young folded leaf samples taken from the wild, harbored mycelium of one of two fungal taxa wrapped around the leaves' glandular trichomes. Most trees harbored the swainsonine producing Ceramothyrium (Chaetothyriales) fungi while a few trees were found to harbor a Truncatella (Xylariales) species, suggesting endophyte replacement. Seeds had higher concentrations of the indolizidine alkaloid swainsonine than leaves. Additionally, seeds from trees harboring Ceramothyrium fungi exhibited less bruchid damage and had higher concentrations of swainsonine than seeds from trees harboring Truncatella fungi. Five sesquiterpenes were detected in the leaf trichomes in both Ceramothyrium and Truncatella colonized trees. The seed content of the tropane alkaloids, tropine and tropinone, did not differ significantly among the two fungal symbionts. It is likely that the host allocates the defensive chemicals from leaves to seeds, protecting them from seed predators such as bruchid beetles. Overall, our field data show that Ipomoea species provides an interesting opportunity to study vertical and horizontal fungal symbiont transmissions.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 2","pages":"26"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01578-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several Convolvulaceae species harbor heritable fungal endophytes from which alkaloids are translocated to reproductive tissues of the plant host. Evidence for the distribution and ecological role of these fungal alkaloids, however, is lacking or incomplete for many host species and growth forms. Here we report on the identity of the fungal endophytes and quantities of alkaloids present in the leaves and seeds of the arborescent morning glory, Ipomoea murucoides (Convolvulaceae). Young folded leaf samples taken from the wild, harbored mycelium of one of two fungal taxa wrapped around the leaves' glandular trichomes. Most trees harbored the swainsonine producing Ceramothyrium (Chaetothyriales) fungi while a few trees were found to harbor a Truncatella (Xylariales) species, suggesting endophyte replacement. Seeds had higher concentrations of the indolizidine alkaloid swainsonine than leaves. Additionally, seeds from trees harboring Ceramothyrium fungi exhibited less bruchid damage and had higher concentrations of swainsonine than seeds from trees harboring Truncatella fungi. Five sesquiterpenes were detected in the leaf trichomes in both Ceramothyrium and Truncatella colonized trees. The seed content of the tropane alkaloids, tropine and tropinone, did not differ significantly among the two fungal symbionts. It is likely that the host allocates the defensive chemicals from leaves to seeds, protecting them from seed predators such as bruchid beetles. Overall, our field data show that Ipomoea species provides an interesting opportunity to study vertical and horizontal fungal symbiont transmissions.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.