Xiaofang Shi, Shengyao Zhou, Lanzi Xu, Rajapakshalage Thashikala Nethmini, Yu Zhang, Liangliang Huang, Ke Dong, Huaxian Zhao, Lianghao Pan
{"title":"Shifts in Soil Fungal Community and Trophic Modes During Mangrove Ecosystem Restoration.","authors":"Xiaofang Shi, Shengyao Zhou, Lanzi Xu, Rajapakshalage Thashikala Nethmini, Yu Zhang, Liangliang Huang, Ke Dong, Huaxian Zhao, Lianghao Pan","doi":"10.3390/jof11020146","DOIUrl":null,"url":null,"abstract":"<p><p>Mangrove ecosystems are valuable coastal ecosystems; however, studies on the diversity and functional features of their soil fungal communities during restoration are limited. In this study, we examined fungal diversity and trophic modes across mudflat, young mangrove, and mature mangrove stages. We found that Ascomycota and Basidiomycota were the dominant phyla, with saprotrophs as the most abundant trophic mode. The abundance of the major phyla and trophic modes significantly varied across restoration stages. Although fungal alpha (α)-diversity remained stable among the stages, beta (β)-diversity showed significant differentiation. Spearman's analysis and partial Mantel tests revealed that total nitrogen and inorganic phosphorus significantly influenced the fungal α-diversity, whereas temperature and pH primarily shaped the fungal β-diversity. Total nitrogen and carbon were key factors affecting the trophic mode α-diversity, whereas total phosphorus and inorganic phosphorus were the main drivers of the trophic mode β-diversity. Variation partitioning analysis confirmed that nutrients, rather than soil properties, were the primary factors shaping fungal communities and trophic modes. Random forest analysis identified key bioindicators, including species such as Paraphyton cookei, and trophic modes such as saprotrophs, both of which were strongly influenced by soil carbon. These findings advance our understanding of fungal ecology in mangrove restoration.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mangrove ecosystems are valuable coastal ecosystems; however, studies on the diversity and functional features of their soil fungal communities during restoration are limited. In this study, we examined fungal diversity and trophic modes across mudflat, young mangrove, and mature mangrove stages. We found that Ascomycota and Basidiomycota were the dominant phyla, with saprotrophs as the most abundant trophic mode. The abundance of the major phyla and trophic modes significantly varied across restoration stages. Although fungal alpha (α)-diversity remained stable among the stages, beta (β)-diversity showed significant differentiation. Spearman's analysis and partial Mantel tests revealed that total nitrogen and inorganic phosphorus significantly influenced the fungal α-diversity, whereas temperature and pH primarily shaped the fungal β-diversity. Total nitrogen and carbon were key factors affecting the trophic mode α-diversity, whereas total phosphorus and inorganic phosphorus were the main drivers of the trophic mode β-diversity. Variation partitioning analysis confirmed that nutrients, rather than soil properties, were the primary factors shaping fungal communities and trophic modes. Random forest analysis identified key bioindicators, including species such as Paraphyton cookei, and trophic modes such as saprotrophs, both of which were strongly influenced by soil carbon. These findings advance our understanding of fungal ecology in mangrove restoration.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.