Hai Zhang, Dingyuan Niu, Junbiao Yang, Xiaoyang Zhang, Jun Zhu, Wencai Li
{"title":"β-Ga<sub>2</sub>O<sub>3</sub> Thin Films via an Inorganic Sol-Gel Spin Coating: Preparation and Characterization.","authors":"Hai Zhang, Dingyuan Niu, Junbiao Yang, Xiaoyang Zhang, Jun Zhu, Wencai Li","doi":"10.3390/nano15040277","DOIUrl":null,"url":null,"abstract":"<p><p>β-Ga<sub>2</sub>O<sub>3</sub> holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga<sub>2</sub>O<sub>3</sub> thin films are prepared using an inorganic solution reaction spin-coating method followed by post-annealing. The structures, surface morphologies, and optical properties of the films are then characterized using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry. A low-cost Ga metal was used to produce NH<sub>4</sub>Ga(SO<sub>4</sub>)<sub>2</sub>, which was then converted into a precursor solution and spin-coated onto sapphire and quartz substrates. Ten cycles of spin coating produced smoother films, although higher annealing temperatures induced more cracks. The films on the (0001) sapphire subjected to spin-coating and preheating processes that were repeated for ten cycles, followed by annealing at 800 °C, had a preferred orientation in the [-201] direction. All the films showed high transmittances of 85% in ultraviolet-visible light with wavelengths above 400 nm. The films on the (0001) sapphire substrate that were annealed at 800 °C and 1000 °C exhibited bandgaps of 4.8 and 4.98 eV, respectively. The sapphire substrates demonstrated a superior compatibility for high-quality Ga<sub>2</sub>O<sub>3</sub> film fabrication compared to quartz. This method offers a cost-effective and efficient approach for producing high-quality β-Ga<sub>2</sub>O<sub>3</sub> films on high-temperature-resistant substrates with promising potential for optoelectronic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040277","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
β-Ga2O3 holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga2O3 thin films are prepared using an inorganic solution reaction spin-coating method followed by post-annealing. The structures, surface morphologies, and optical properties of the films are then characterized using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry. A low-cost Ga metal was used to produce NH4Ga(SO4)2, which was then converted into a precursor solution and spin-coated onto sapphire and quartz substrates. Ten cycles of spin coating produced smoother films, although higher annealing temperatures induced more cracks. The films on the (0001) sapphire subjected to spin-coating and preheating processes that were repeated for ten cycles, followed by annealing at 800 °C, had a preferred orientation in the [-201] direction. All the films showed high transmittances of 85% in ultraviolet-visible light with wavelengths above 400 nm. The films on the (0001) sapphire substrate that were annealed at 800 °C and 1000 °C exhibited bandgaps of 4.8 and 4.98 eV, respectively. The sapphire substrates demonstrated a superior compatibility for high-quality Ga2O3 film fabrication compared to quartz. This method offers a cost-effective and efficient approach for producing high-quality β-Ga2O3 films on high-temperature-resistant substrates with promising potential for optoelectronic applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.