Phosphorylated BLM peptide acts as an agonist for DNA damage response.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-02-08 DOI:10.1093/nar/gkaf106
Ritu Agrawal, Himanshi Agarwal, Chetana Mukherjee, Baishali Chakraborty, Vandana Sharma, Vivek Tripathi, Nitin Kumar, Swati Priya, Nidhi Gupta, Gagan Deep Jhingan, Avinash Bajaj, Sagar Sengupta
{"title":"Phosphorylated BLM peptide acts as an agonist for DNA damage response.","authors":"Ritu Agrawal, Himanshi Agarwal, Chetana Mukherjee, Baishali Chakraborty, Vandana Sharma, Vivek Tripathi, Nitin Kumar, Swati Priya, Nidhi Gupta, Gagan Deep Jhingan, Avinash Bajaj, Sagar Sengupta","doi":"10.1093/nar/gkaf106","DOIUrl":null,"url":null,"abstract":"<p><p>Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf106","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Crosslinking pathways, dynamics, and kinetics between guanosine and lysine following one- versus two-electron oxidation of guanosine A transcription factor from the cryptic Escherichia coli Rac prophage controls both phage and host operons Tuning the tropism and infectivity of SARS-CoV-2 virus-like particles for mRNA delivery Chemical evolution of ASO-like DNAzymes for effective and extended gene silencing in cells The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1