Crosslinking pathways, dynamics, and kinetics between guanosine and lysine following one- versus two-electron oxidation of guanosine

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-03-05 DOI:10.1093/nar/gkaf071
May Myat Moe, Jonathan Benny, Varonica Lee, Midas Tsai, Jianbo Liu
{"title":"Crosslinking pathways, dynamics, and kinetics between guanosine and lysine following one- versus two-electron oxidation of guanosine","authors":"May Myat Moe, Jonathan Benny, Varonica Lee, Midas Tsai, Jianbo Liu","doi":"10.1093/nar/gkaf071","DOIUrl":null,"url":null,"abstract":"DNA–protein crosslinks (DPCs) remain as a poorly understood DNA lesion. Herein, crosslinking between guanosine and lysine was explored using a model system comprising 9-methylguanine (9MG) and CH3NH2. Crosslinking was induced by one-electron oxidized 9MG•+ radical cations and doubly oxidized [9MG – HN2]+ cations, and analyzed as a function of reaction energy using an electrospray ionization tandem mass spectrometer. Experiment was augmented by dynamics simulations and kinetics modeling. Alongside the formation of X-NH2CH3[9MG]•+ (X = C2, C8) via direct addition, 8-CH2NH2[9MG + HN7]+ was discovered as a new crosslink between 9MG•+ and CH3NH2. This crosslink results from methyl–hydrogen abstraction of CH3NH2 by the N7 of 9MG•+, followed by adding •CH2NH2 to [9MG + HN7]+. Notably, crosslinking is dramatically enhanced between [9MG – HN2]+ and CH3NH2, yielding major products X-+NH2CH3[9MG – HN2] (X = N2, N3, C5, and C8, along with their proton tautomers), which form from the direct CH3NH2 addition to [9MG – HN2]+, and minor products X-CH2NH2[9MG – HN2 + HO6]+ (X = N2, N3, C5, N7, and C8), which arise from the combination of methyl–hydrogen abstraction products. This work dissected and distinguished the roles of one- versus two-electron oxidized guanosine in DPC formation, offering novel insights into oxidative DNA damage.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"52 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf071","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA–protein crosslinks (DPCs) remain as a poorly understood DNA lesion. Herein, crosslinking between guanosine and lysine was explored using a model system comprising 9-methylguanine (9MG) and CH3NH2. Crosslinking was induced by one-electron oxidized 9MG•+ radical cations and doubly oxidized [9MG – HN2]+ cations, and analyzed as a function of reaction energy using an electrospray ionization tandem mass spectrometer. Experiment was augmented by dynamics simulations and kinetics modeling. Alongside the formation of X-NH2CH3[9MG]•+ (X = C2, C8) via direct addition, 8-CH2NH2[9MG + HN7]+ was discovered as a new crosslink between 9MG•+ and CH3NH2. This crosslink results from methyl–hydrogen abstraction of CH3NH2 by the N7 of 9MG•+, followed by adding •CH2NH2 to [9MG + HN7]+. Notably, crosslinking is dramatically enhanced between [9MG – HN2]+ and CH3NH2, yielding major products X-+NH2CH3[9MG – HN2] (X = N2, N3, C5, and C8, along with their proton tautomers), which form from the direct CH3NH2 addition to [9MG – HN2]+, and minor products X-CH2NH2[9MG – HN2 + HO6]+ (X = N2, N3, C5, N7, and C8), which arise from the combination of methyl–hydrogen abstraction products. This work dissected and distinguished the roles of one- versus two-electron oxidized guanosine in DPC formation, offering novel insights into oxidative DNA damage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Crosslinking pathways, dynamics, and kinetics between guanosine and lysine following one- versus two-electron oxidation of guanosine A transcription factor from the cryptic Escherichia coli Rac prophage controls both phage and host operons Tuning the tropism and infectivity of SARS-CoV-2 virus-like particles for mRNA delivery Chemical evolution of ASO-like DNAzymes for effective and extended gene silencing in cells The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1