Mussel-Inspired Hydrogels Incorporating Graphite Derivatives for Soft Tissue Regeneration.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-02-12 DOI:10.3390/nano15040276
Filipa Fernandes, Daniela Peixoto, Cátia Correia, Magda Silva, Maria C Paiva, Natália M Alves
{"title":"Mussel-Inspired Hydrogels Incorporating Graphite Derivatives for Soft Tissue Regeneration.","authors":"Filipa Fernandes, Daniela Peixoto, Cátia Correia, Magda Silva, Maria C Paiva, Natália M Alves","doi":"10.3390/nano15040276","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid (HA)-based hydrogels offer a promising approach for soft tissue application due to their biocompatibility, tunable mechanical properties, ability to mimic the extracellular matrix, and capacity to support cell adhesion and proliferation. In this work, bioadhesive composite hydrogels were developed by integrating graphite derivatives (EG) into a dopamine-modified HA matrix (HA-Cat), which enhances tissue adhesion through catechol groups that mimic mussel-inspired adhesion mechanisms. The EG was functionalized via 1,3-dipolar cycloaddition reaction (f-EG), that allowed the anchoring of silver nanoparticles (f-EG-Ag) and grafting of hydrocaffeic acid (f-EG-Cat) on the functionalized EG surfaces. The hydrogels were produced by oxidative crosslinking of HA-Cat under mild basic pH conditions using sodium periodate. Indirect in vitro assays using L929 fibroblast cells showed high biocompatibility and enhanced cell proliferation at optimized composite hydrogel concentrations. These findings suggest that composite hydrogels could find an application as bioactive, adhesive scaffolds for the regeneration of soft tissues, where they can facilitate localized agent delivery and integration with the host tissue.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040276","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyaluronic acid (HA)-based hydrogels offer a promising approach for soft tissue application due to their biocompatibility, tunable mechanical properties, ability to mimic the extracellular matrix, and capacity to support cell adhesion and proliferation. In this work, bioadhesive composite hydrogels were developed by integrating graphite derivatives (EG) into a dopamine-modified HA matrix (HA-Cat), which enhances tissue adhesion through catechol groups that mimic mussel-inspired adhesion mechanisms. The EG was functionalized via 1,3-dipolar cycloaddition reaction (f-EG), that allowed the anchoring of silver nanoparticles (f-EG-Ag) and grafting of hydrocaffeic acid (f-EG-Cat) on the functionalized EG surfaces. The hydrogels were produced by oxidative crosslinking of HA-Cat under mild basic pH conditions using sodium periodate. Indirect in vitro assays using L929 fibroblast cells showed high biocompatibility and enhanced cell proliferation at optimized composite hydrogel concentrations. These findings suggest that composite hydrogels could find an application as bioactive, adhesive scaffolds for the regeneration of soft tissues, where they can facilitate localized agent delivery and integration with the host tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Comparison Between Ripening Under a Constant Volume and Ripening Under a Constant Surface Area. Crystal Phase and Morphology Control for Enhanced Luminescence in K3GaF6:Er3. FeFET-Based Computing-in-Memory Unit Circuit and Its Application. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. Review of Biomass-Derived Carbon Nanomaterials-From 0D to 3D-For Supercapacitor Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1