Kangkang Tang, Feihang Long, Fenghua Zhang, Hongyuan Yin, Jiuzhou Zhao, Maoqian Xie, Ying An, Weimin Yang, Baihong Chi
{"title":"Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review.","authors":"Kangkang Tang, Feihang Long, Fenghua Zhang, Hongyuan Yin, Jiuzhou Zhao, Maoqian Xie, Ying An, Weimin Yang, Baihong Chi","doi":"10.3390/nano15040268","DOIUrl":null,"url":null,"abstract":"<p><p>Ceramic materials have the merits of an adjustable dielectric constant, high strength, high temperature resistance, and oxidation resistance, and are thus being used as the protection matrix for carbon series, metal oxides, and other wave-absorbing materials at high temperatures. Here, progress on high-temperature-resistant wave-absorbing ceramic materials is introduced through the aspects of their composition and structure. In addition, metamaterials used for such purposes, which are mainly produced through 3D printing, are also highlighted. The pros and cons of high-temperature-resistant electromagnetic wave absorbers based on ceramic materials are systematically analyzed, and possible development directions are proposed. This work may assist in the design and manufacture of a new generation of radars, ships, and aircraft.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858011/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15040268","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic materials have the merits of an adjustable dielectric constant, high strength, high temperature resistance, and oxidation resistance, and are thus being used as the protection matrix for carbon series, metal oxides, and other wave-absorbing materials at high temperatures. Here, progress on high-temperature-resistant wave-absorbing ceramic materials is introduced through the aspects of their composition and structure. In addition, metamaterials used for such purposes, which are mainly produced through 3D printing, are also highlighted. The pros and cons of high-temperature-resistant electromagnetic wave absorbers based on ceramic materials are systematically analyzed, and possible development directions are proposed. This work may assist in the design and manufacture of a new generation of radars, ships, and aircraft.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.