Estimation of chlorophyll content in rice canopy leaves using 3D radiative transfer modeling and unmanned aerial hyperspectral images.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2025-02-24 DOI:10.1186/s13007-025-01346-z
Honggang Zhang, Dan Zhao, Zhonghui Guo, Sien Guo, Quchi Bai, Huini Cao, Shuai Feng, Fenghua Yu, Tongyu Xu
{"title":"Estimation of chlorophyll content in rice canopy leaves using 3D radiative transfer modeling and unmanned aerial hyperspectral images.","authors":"Honggang Zhang, Dan Zhao, Zhonghui Guo, Sien Guo, Quchi Bai, Huini Cao, Shuai Feng, Fenghua Yu, Tongyu Xu","doi":"10.1186/s13007-025-01346-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The chlorophyll content has a strong influence on plant photosynthesis and crop growth and is a key factor for understanding the functioning of farming systems. Therefore, the accurate estimation of chlorophyll content (Cab) is important in precision agriculture. In this study, the three-dimensional radiative transfer model (3DRTM) was used to calculate the radiative transfer and simulate the canopy hyperspectral image of a rice field. Then, a physically based joint inversion model was developed using an iterative optimization approach with penalty function and a priori information constraints to estimate chlorophyll content efficiently and accurately from the hyperspectral curve of a rice canopy.</p><p><strong>Results: </strong>The inversion model demonstrates that the sparrow search algorithm (SSA) can estimate rice Cab, providing relatively satisfactory Cab estimation outcomes. In addition, the inversion of the SSA method with or without carotenoids content (Car) constraints was compared, and compared to the inversion of Cab without Car constraints [coefficient of determination (R<sup>2</sup>) = 0.690, root mean square error (RMSE) = 7.677 µg/cm<sup>2</sup>)], the SSA with constraints was more accurate (R<sup>2</sup> = 0.812, RMSE = 5.413 µg/cm<sup>2</sup>).</p><p><strong>Conclusions: </strong>The Large-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes (LESS) exhibited higher accuracy in estimating the rice Cab compared to the 1DRTM PROSAIL model, which is constituted by coupling the Leaf Optical Properties Spectra (PROSPECT) model and the Scattering by Arbitrarily Inclined Leaves (SAIL) model. The 3DRTM is conducive to precisely estimating Cab from the hyperspectral data of the rice canopy, thereby holding great potential for precise nutrient management in rice cultivation.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"26"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01346-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The chlorophyll content has a strong influence on plant photosynthesis and crop growth and is a key factor for understanding the functioning of farming systems. Therefore, the accurate estimation of chlorophyll content (Cab) is important in precision agriculture. In this study, the three-dimensional radiative transfer model (3DRTM) was used to calculate the radiative transfer and simulate the canopy hyperspectral image of a rice field. Then, a physically based joint inversion model was developed using an iterative optimization approach with penalty function and a priori information constraints to estimate chlorophyll content efficiently and accurately from the hyperspectral curve of a rice canopy.

Results: The inversion model demonstrates that the sparrow search algorithm (SSA) can estimate rice Cab, providing relatively satisfactory Cab estimation outcomes. In addition, the inversion of the SSA method with or without carotenoids content (Car) constraints was compared, and compared to the inversion of Cab without Car constraints [coefficient of determination (R2) = 0.690, root mean square error (RMSE) = 7.677 µg/cm2)], the SSA with constraints was more accurate (R2 = 0.812, RMSE = 5.413 µg/cm2).

Conclusions: The Large-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes (LESS) exhibited higher accuracy in estimating the rice Cab compared to the 1DRTM PROSAIL model, which is constituted by coupling the Leaf Optical Properties Spectra (PROSPECT) model and the Scattering by Arbitrarily Inclined Leaves (SAIL) model. The 3DRTM is conducive to precisely estimating Cab from the hyperspectral data of the rice canopy, thereby holding great potential for precise nutrient management in rice cultivation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
Vapor pressure deficit control and mechanical vibration techniques to induce self-pollination in strawberry flowers. A method for phenotyping lettuce volume and structure from 3D images. Estimation of chlorophyll content in rice canopy leaves using 3D radiative transfer modeling and unmanned aerial hyperspectral images. Exploring the potential of microscopic hyperspectral, Raman, and LIBS for nondestructive quality assessment of diverse rice samples. Two-fold red excess (TREx): a simple and novel digital color index that enables non-invasive real-time monitoring of green-leaved as well as anthocyanin-rich crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1