Current methods in explainable artificial intelligence and future prospects for integrative physiology.

IF 2.9 4区 医学 Q2 PHYSIOLOGY Pflugers Archiv : European journal of physiology Pub Date : 2025-02-25 DOI:10.1007/s00424-025-03067-7
Bettina Finzel
{"title":"Current methods in explainable artificial intelligence and future prospects for integrative physiology.","authors":"Bettina Finzel","doi":"10.1007/s00424-025-03067-7","DOIUrl":null,"url":null,"abstract":"<p><p>Explainable artificial intelligence (XAI) is gaining importance in physiological research, where artificial intelligence is now used as an analytical and predictive tool for many medical research questions. The primary goal of XAI is to make AI models understandable for human decision-makers. This can be achieved in particular through providing inherently interpretable AI methods or by making opaque models and their outputs transparent using post hoc explanations. This review introduces XAI core topics and provides a selective overview of current XAI methods in physiology. It further illustrates solved and discusses open challenges in XAI research using existing practical examples from the medical field. The article gives an outlook on two possible future prospects: (1) using XAI methods to provide trustworthy AI for integrative physiological research and (2) integrating physiological expertise about human explanation into XAI method development for useful and beneficial human-AI partnerships.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03067-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable artificial intelligence (XAI) is gaining importance in physiological research, where artificial intelligence is now used as an analytical and predictive tool for many medical research questions. The primary goal of XAI is to make AI models understandable for human decision-makers. This can be achieved in particular through providing inherently interpretable AI methods or by making opaque models and their outputs transparent using post hoc explanations. This review introduces XAI core topics and provides a selective overview of current XAI methods in physiology. It further illustrates solved and discusses open challenges in XAI research using existing practical examples from the medical field. The article gives an outlook on two possible future prospects: (1) using XAI methods to provide trustworthy AI for integrative physiological research and (2) integrating physiological expertise about human explanation into XAI method development for useful and beneficial human-AI partnerships.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
期刊最新文献
The lateral habenula regulates stress-related respiratory responses via the monoaminergic system. Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels. Impact of the estrous cycle on brain monoamines and behavioral and respiratory responses to CO2 in mice. Effects of tDCS on glutamatergic pathways in epilepsy: neuroprotective and therapeutic potential. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1