Zhihao Lu, Bin Hu, Jiaxian He, Tao Yuan, Qinchun Wu, Kun Yang, Weikang Zheng, Yue Huang, Yuantao Xu, Xia Wang, Qiang Xu
{"title":"The transcription factor CitPH4 regulates plant defense-related metabolite biosynthesis in citrus.","authors":"Zhihao Lu, Bin Hu, Jiaxian He, Tao Yuan, Qinchun Wu, Kun Yang, Weikang Zheng, Yue Huang, Yuantao Xu, Xia Wang, Qiang Xu","doi":"10.1093/plphys/kiaf027","DOIUrl":null,"url":null,"abstract":"<p><p>Wild citrus (Citrus L.) exhibits high disease resistance accompanied by high-acidity fruit, whereas cultivated citrus produces tastier fruit but is more susceptible to disease. This is a common phenomenon, but the underlying molecular mechanisms remain unknown. Citrus PH4 (CitPH4) is a key transcription factor promoting citric acid accumulation in fruits. Accordingly, CitPH4 expression decreased during citrus domestication, along with a reduction in citric acid levels. Here, we demonstrate that a CitPH4-knockout mutant exhibits an acidless phenotype and displays substantially lower resistance to citrus diseases. Metabolome and transcriptome analyses of CitPH4-overexpressing citrus callus, Arabidopsis, and CitPH4-knockout citrus fruits revealed that quercetin, pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP) are pivotal defense-related metabolites. Application of quercetin and Pip inhibited the growth of Xcc and Penicillium italicum, while NHP inhibited the growth of P. italicum and Huanglongbing. Biochemical experiments demonstrated that CitPH4 enhances the expression of quercetin and NHP biosynthesis genes by binding to their promoters. Moreover, Pip and quercetin contents were positively associated with citric acid content in the pulp of fruits from natural citrus populations. Finally, the heterologous expression of CitPH4 in Arabidopsis promoted the expression of stress response genes and enhanced its resistance to the fungal pathogen Botrytis cinerea. The overexpression of CitPH4 in tobacco (Nicotiana tabacum) enhanced disease resistance. This study reveals the mechanism by which CitPH4 regulates disease resistance and fruit acidity, providing a conceptual strategy to control fruit acidity and resistance to devastating diseases.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"197 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wild citrus (Citrus L.) exhibits high disease resistance accompanied by high-acidity fruit, whereas cultivated citrus produces tastier fruit but is more susceptible to disease. This is a common phenomenon, but the underlying molecular mechanisms remain unknown. Citrus PH4 (CitPH4) is a key transcription factor promoting citric acid accumulation in fruits. Accordingly, CitPH4 expression decreased during citrus domestication, along with a reduction in citric acid levels. Here, we demonstrate that a CitPH4-knockout mutant exhibits an acidless phenotype and displays substantially lower resistance to citrus diseases. Metabolome and transcriptome analyses of CitPH4-overexpressing citrus callus, Arabidopsis, and CitPH4-knockout citrus fruits revealed that quercetin, pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP) are pivotal defense-related metabolites. Application of quercetin and Pip inhibited the growth of Xcc and Penicillium italicum, while NHP inhibited the growth of P. italicum and Huanglongbing. Biochemical experiments demonstrated that CitPH4 enhances the expression of quercetin and NHP biosynthesis genes by binding to their promoters. Moreover, Pip and quercetin contents were positively associated with citric acid content in the pulp of fruits from natural citrus populations. Finally, the heterologous expression of CitPH4 in Arabidopsis promoted the expression of stress response genes and enhanced its resistance to the fungal pathogen Botrytis cinerea. The overexpression of CitPH4 in tobacco (Nicotiana tabacum) enhanced disease resistance. This study reveals the mechanism by which CitPH4 regulates disease resistance and fruit acidity, providing a conceptual strategy to control fruit acidity and resistance to devastating diseases.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.