Stefano Fornasaro, Aleksander Astel, Pierluigi Barbieri, Sabina Licen
{"title":"Disentangling Multiannual Air Quality Profiles Aided by Self-Organizing Map and Positive Matrix Factorization.","authors":"Stefano Fornasaro, Aleksander Astel, Pierluigi Barbieri, Sabina Licen","doi":"10.3390/toxics13020137","DOIUrl":null,"url":null,"abstract":"<p><p>The evaluation of air pollution is a critical concern due to its potential severe impacts on human health. Currently, vast quantities of data are collected at high frequencies, and researchers must navigate multiannual, multisite datasets trying to identify possible pollutant sources while addressing the presence of noise and sparse missing data. To address this challenge, multivariate data analysis is widely used with an increasing interest in neural networks and deep learning networks along with well-established chemometrics methods and receptor models. Here, we report a combined approach involving the Self-Organizing Map (SOM) algorithm, Hierarchical Clustering Analysis (HCA), and Positive Matrix Factorization (PMF) to disentangle multiannual, multisite data in a single elaboration without previously separating the sites and years. The approach proved to be valid, allowing us to detect the site peculiarities in terms of pollutant sources, the variation in pollutant profiles during years and the outliers, affording a reliable interpretation.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020137","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of air pollution is a critical concern due to its potential severe impacts on human health. Currently, vast quantities of data are collected at high frequencies, and researchers must navigate multiannual, multisite datasets trying to identify possible pollutant sources while addressing the presence of noise and sparse missing data. To address this challenge, multivariate data analysis is widely used with an increasing interest in neural networks and deep learning networks along with well-established chemometrics methods and receptor models. Here, we report a combined approach involving the Self-Organizing Map (SOM) algorithm, Hierarchical Clustering Analysis (HCA), and Positive Matrix Factorization (PMF) to disentangle multiannual, multisite data in a single elaboration without previously separating the sites and years. The approach proved to be valid, allowing us to detect the site peculiarities in terms of pollutant sources, the variation in pollutant profiles during years and the outliers, affording a reliable interpretation.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.