Pu Guo, Yunda Xue, Dan Zhang, Qirong Lu, Yu Liu, Jianglin Xiong, Chun Ye, Shulin Fu, Zhongyuan Wu, Xu Wang, Yinsheng Qiu
{"title":"Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of <i>Streptococcus suis</i> Meningitis in Humans and Pigs.","authors":"Pu Guo, Yunda Xue, Dan Zhang, Qirong Lu, Yu Liu, Jianglin Xiong, Chun Ye, Shulin Fu, Zhongyuan Wu, Xu Wang, Yinsheng Qiu","doi":"10.3390/toxics13020138","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus suis</i> (<i>S. suis</i>) is a major swine pathogen throughout the world as well as an emerging zoonotic agent. Among the symptoms caused by <i>S. suis</i>, including septicemia, pneumonia, endo-carditis, arthritis, and meningitis, the latter is the most overlooked. In the present study, we explored the mechanism of action of berberine against <i>S. suis</i> meningitis by obtaining berberine-related action targets, porcine <i>S. suis</i> meningitis targets, and human <i>S. suis</i> meningitis targets from open databases. We constructed a protein-protein interaction (PPI) network by using the STRING database and employed Cytoscape 3.8.0 to screen for core targets. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses through DAVID. We identified 31 potential targets of berberine, of which Toll-like receptor 4 (TLR4), fibronectin 1 (FN1), superoxide dismutase (SOD1), and catalase (CAT) were the four most critical targets. GO analysis revealed the enrichment of terms related to the response to oxidative stress and the inflammatory response. KEGG analysis revealed the enrichment of the interleukin 17 (IL-17), phosphoinositide 3-kinase (PI3K)-Akt, TLR, tumor necrosis factor (TNF), and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, the admetSAR results showed that berberine can cross the blood-brain barrier. The molecular docking results indicated key binding activity between TLR4-berberine and FN1-berberine. In summary, berberine protects against <i>Streptococcus suis</i> meningitis by regulating inflammatory response and oxidative stress in humans and pigs. Our study updates the current knowledge of the targets of <i>S. suis</i> meningitis to exploit new drugs in humans and pigs, to develop environmentally friendly and antibiotic-free animal-derived food products, and to improve the farming industry and economic development.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020138","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus suis (S. suis) is a major swine pathogen throughout the world as well as an emerging zoonotic agent. Among the symptoms caused by S. suis, including septicemia, pneumonia, endo-carditis, arthritis, and meningitis, the latter is the most overlooked. In the present study, we explored the mechanism of action of berberine against S. suis meningitis by obtaining berberine-related action targets, porcine S. suis meningitis targets, and human S. suis meningitis targets from open databases. We constructed a protein-protein interaction (PPI) network by using the STRING database and employed Cytoscape 3.8.0 to screen for core targets. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses through DAVID. We identified 31 potential targets of berberine, of which Toll-like receptor 4 (TLR4), fibronectin 1 (FN1), superoxide dismutase (SOD1), and catalase (CAT) were the four most critical targets. GO analysis revealed the enrichment of terms related to the response to oxidative stress and the inflammatory response. KEGG analysis revealed the enrichment of the interleukin 17 (IL-17), phosphoinositide 3-kinase (PI3K)-Akt, TLR, tumor necrosis factor (TNF), and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, the admetSAR results showed that berberine can cross the blood-brain barrier. The molecular docking results indicated key binding activity between TLR4-berberine and FN1-berberine. In summary, berberine protects against Streptococcus suis meningitis by regulating inflammatory response and oxidative stress in humans and pigs. Our study updates the current knowledge of the targets of S. suis meningitis to exploit new drugs in humans and pigs, to develop environmentally friendly and antibiotic-free animal-derived food products, and to improve the farming industry and economic development.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.