A Highly Robust Encoder-Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2025-02-10 DOI:10.3390/jimaging11020051
Milan Tripathi, Waree Kongprawechnon, Toshiaki Kondo
{"title":"A Highly Robust Encoder-Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images.","authors":"Milan Tripathi, Waree Kongprawechnon, Toshiaki Kondo","doi":"10.3390/jimaging11020051","DOIUrl":null,"url":null,"abstract":"<p><p>Image denoising is crucial for correcting distortions caused by environmental factors and technical limitations. We propose a novel and highly robust encoder-decoder network (HREDN) for effectively removing mixed salt-and-pepper and Gaussian noise from digital images. HREDN integrates a multi-scale feature enhancement block in the encoder, allowing the network to capture features at various scales and handle complex noise patterns more effectively. To mitigate information loss during encoding, skip connections transfer essential feature maps from the encoder to the decoder, preserving structural details. However, skip connections can also propagate redundant information. To address this, we incorporate attention gates within the skip connections, ensuring that only relevant features are passed to the decoding layers. We evaluate the robustness of the proposed method across facial, medical, and remote sensing domains. The experimental results demonstrate that HREDN excels in preserving edge details and structural features in denoised images, outperforming state-of-the-art techniques in both qualitative and quantitative measures. Statistical analysis further highlights the model's ability to effectively remove noise in diverse, complex scenarios with images of varying resolutions across multiple domains.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising is crucial for correcting distortions caused by environmental factors and technical limitations. We propose a novel and highly robust encoder-decoder network (HREDN) for effectively removing mixed salt-and-pepper and Gaussian noise from digital images. HREDN integrates a multi-scale feature enhancement block in the encoder, allowing the network to capture features at various scales and handle complex noise patterns more effectively. To mitigate information loss during encoding, skip connections transfer essential feature maps from the encoder to the decoder, preserving structural details. However, skip connections can also propagate redundant information. To address this, we incorporate attention gates within the skip connections, ensuring that only relevant features are passed to the decoding layers. We evaluate the robustness of the proposed method across facial, medical, and remote sensing domains. The experimental results demonstrate that HREDN excels in preserving edge details and structural features in denoised images, outperforming state-of-the-art techniques in both qualitative and quantitative measures. Statistical analysis further highlights the model's ability to effectively remove noise in diverse, complex scenarios with images of varying resolutions across multiple domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有多尺度特征增强和注意门的高鲁棒性编码器-解码器网络,用于降低数字图像中的混合高斯和椒盐噪声
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
An Efficient Forest Smoke Detection Approach Using Convolutional Neural Networks and Attention Mechanisms. Direct Distillation: A Novel Approach for Efficient Diffusion Model Inference. Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting. Non-Hospitalized Long COVID Patients Exhibit Reduced Retinal Capillary Perfusion: A Prospective Cohort Study. Unraveling the Role of PET in Cervical Cancer: Review of Current Applications and Future Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1